LANDTAG NORDRHEIN-WESTFALEN

16. Wahlperiode

11.12.2014

Antwort

der Landesregierung auf die Große Anfrage 11 der Fraktion der SPD und der Fraktion BÜNDNIS 90/DIE GRÜNEN Drucksache 16/6049

Wirkungen der Landwirtschaft auf die Ressourcen Wasser, Boden, Luft und biologische Vielfalt in Nordrhein-Westfalen

Das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz hat die Große Anfrage 11 namens der Landesregierung im Einvernehmen mit der Ministerpräsidentin, dem Finanzministerium, dem Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk und der Ministerin für Bundesangelegenheiten, Europa und Medien beantwortet.

Datum des Originals: 10.12.2014/Ausgegeben: 18.12.2014

Vorbemerkung der Großen Anfrage

Etwa die Hälfte der Landesfläche von Nordrhein-Westfalen ist landwirtschaftliche Nutzfläche. Landwirtschaftliche Produktion hat folglich einen großen und wahrnehmbaren Einfluss auf die Form der Kulturlandschaft, den Zustand der Böden und des Grund- und Oberflächenwassers sowie auf Flora und Fauna.

Innerhalb der Landwirtschaft kam es in den letzten Jahrzehnten zu einem Strukturwandel, der zu immer größeren landwirtschaftlichen Produktionseinheiten und höheren Intensität in der Tier- und Pflanzenproduktion geführt hat. Mit dieser Intensivlandwirtschaft ging eine stärkere Belastung des Bodens, des Wassers, der Luft und der biologischen Vielfalt (Biodiversität einher. Insbesondere der jahrzehntelange und flächendeckende Einsatz von organischen und mineralischen Düngemitteln hat zu regional unterschiedlichen und teilweise enormen Belastungen der Böden sowie Oberflächen- und Grundgewässern geführt. Vor allem Nitrate und Pflanzenschutzmittel (PSM) gelten als die Hauptbelastungsfaktoren aus diesem Sektor.

Stickstoff und Phosphat sind zwar wichtige Nährstoffe für landwirtschaftliche Nutzpflanzen. Im Übermaß in die Umwelt eingebracht führen sie jedoch zu Belastungen unserer Ökosysteme. Während der Eintrag aus Abwässern in den letzten Jahren deutlich reduziert werden konnte, stellen Einträge aus der Landwirtschaft weiterhin ein großes Problem dar. Überschüssige Nährstoffe aus landwirtschaftlichen Quellen – z.B. Tierhaltungsanlagen– gelangen in Boden, Wasser oder Luft. Über Niederschläge oder durch Auswaschung werden die Nährstoffe in Land- oder Wasser-Ökosysteme eingetragen, wo sie weitreichende negative Auswirkungen haben. Dieses führt zur Eutrophierung von Wäldern, Mooren, Heiden, Oberflächengewässern und Küstengebieten, einer Nitratbelastung des Grundwassers und einer Versauerung der Böden sowie Gewässer und somit zu einer Beeinträchtigung der Stoffkreisläufe und Verlust von Pflanzen und Tierarten.

Phosphat ist stärker an Bodenpartikel gebunden und kann daher über die Bodenerosion in Oberflächengewässer verlagert werden. Bei Stickstoff besteht die Hauptgefahr darin, dass das sehr leichtlösliche Nitrat in das Grundwasser versickert. Eine große Gefährdung für unser Grundwasser sind Nitrate, die in hohen Konzentrationen als Gesundheitsgefahr eingestuft werden. Stark belastetes Grundwasser kann nicht als Trinkwasser verwendet werden, was zusätzliche Kosten für die Wasserwirtschaft bedeutet, um die Nitrate aus den für die Trinkwassergewinnung genutzten Grundwasserquellen zu beseitigen. In NRW befinden sich fast 40 Prozent der Grundwasserkörper aufgrund der hohen Nitratbelastung derzeit in einem schlechten chemischen Zustand. Insbesondere Nitrateinträge aus der landwirtschaftlichen Düngung stellen hier ein großes Problem dar.

Darüber hinaus geht ein Teil des Stickstoffs, insbesondere aus Tierdung, durch Verflüchtigung als Ammoniak oder als Distickstoffmonoxid/Lachgas an die Luft verloren. Die steigenden Emissionen von Stickoxiden und Ammoniak, die wesentlich zur Überdüngung und Versauerung von Gewässern und Böden beitragen, stellen eine weitere Herausforderung für den Umweltschutz dar. Überall dort, wo Stickstoffmengen aus der Luft auf Standorte treffen, die an niedrige Nährstoffgehalte angepasst sind, verlieren die bisher standorttypischen Pflanzen und daran wiederum angepasste Arten ihren Lebensraum. Diese Entwicklung führt langfristig zum Verlust der Biodiversität.

Der Einsatz von Stickstoff und Phosphaten wird durch verschiedene rechtliche Regelungen erfasst und geregelt. Der aktuelle Zustand der Böden und des Grund- und Oberflächenwassers zeigt allerdings, dass die bestehenden rechtlichen Instrumente nicht ausreichen, um dem Ziel einer nachhaltigen Boden- und Wassernutzung zu genügen.

Für eine zukünftige und nachhaltige Sicherung der Ressourcen Wasser, Luft, und Boden sowie der biologischen Vielfalt stellen sich daher folgende Grundfragen:

- Welchen Einfluss hat die landwirtschaftliche Produktion in NRW auf den Zustand der Böden, der Luft, der Gewässer und der biologischen Vielfalt?
- Welche Steuerungsinstrumente haben sich bewährt und welche Steuerungsinstrumente könnten zukünftig zum Schutz von Böden, Luft, Gewässer und Biodiversität genutzt werden?
- Wie effektiv und zielführend sind die bestehenden Regelungen zur landwirtschaftlichen Produktionskontrolle?

Vorbemerkung der Landesregierung

Nordrhein-Westfalen ist nicht nur ein bedeutender Industriestandort, sondern zugleich ein wichtiges Agrarland. Die Landwirtschaft hat hierzulande eine große wirtschaftliche, ökologische und soziale Bedeutung. Sie erfüllt vielfältige Aufgaben. Sie sichert die Ernährung, erzeugt Futtermittel, produziert nachwachsende Rohstoffe, erhält eine vielfältige Kulturlandschaft und bildet die Grundlage für lebenswerte ländliche Räume in Nordrhein-Westfalen. Rund die Hälfte der Landesfläche wird landwirtschaftlich genutzt. Durch die zunehmende Mechanisierung, Intensivierung und Spezialisierung vollzog sich in den vergangenen Jahrzehnten in der nordrhein-westfälischen Landwirtschaft einerseits ein grundlegender Strukturwandel hin zu größeren Produktionseinheiten und immer effektiveren Produktionsverfahren. Parallel zu diesen betrieblichen Wachstumsprozessen haben Ökologisierung, Regionalisierung und Direktvermarktung zahlreichen Betrieben in der Vielfältigkeit von Haupt-, Zu- und Nebenerwerbsbetrieben Entwicklungsperspektiven eröffnet und Existenzen gesichert. Der ökologische Landbau mit seiner Entwicklungsdynamik und seiner Bewirtschaftungspraxis hat dabei vielfältige neue Wege beschritten und aufgezeigt, wie man stärker mit der Natur und den natürlichen Gegebenheiten vor Ort wirtschaften kann.

Mit der Art der Landbewirtschaftung und Tierhaltung verbinden sich insgesamt vielfältige Umwelteffekte. Damit kommt der Landwirtschaft auch für den Schutz der Umweltmedien Boden, Wasser und Luft sowie der biologischen Vielfalt eine besondere Bedeutung zu.

Aus diesem Grund wurde durch die Landesregierung bereits politischer Handlungsbedarf zum Schutz der Umweltmedien sowie der Biodiversität identifiziert und Vorschläge zu den erforderlichen rechtlichen Anpassungen auf nationaler wie auf europäischer Ebene eingebracht. Ziel der Landesregierung ist eine tier-, umwelt- und klimagerechte Modernisierung der Landwirtschaft.

Die vorliegende Beantwortung der Großen Anfrage enthält daher auch viele Hinweise auf die politischen Handlungsfelder der Landesregierung. In diesem Zusammenhang sind z.B. die Initiativen zur Verschärfung des Düngerechts, zur Ausbringung von Wirtschaftsdüngern, der Emissionsbegrenzung bei Tierhaltungsanlagen und die Novellierung des Landschaftsgesetzes NRW sowie die Vorschläge zur Ausgestaltung des Greenings im Rahmen der EU-Agrarpolitik zu nennen.

Die Landwirtschaft braucht in Zukunft Produktions- und Tierhaltungsformen, die qualitativ hochwertige Lebensmittel und nachwachsende Rohstoffe liefern, die Ressourcen nachhaltig nutzen, die Umwelt nicht belasten, zur Biodiversität beitragen und abwechslungsreiche sowie vitale ländliche Räume schaffen. Die Landesregierung setzt sich daher für eine nachhaltige, bäuerliche, tiergerechte und gentechnikfreie Landwirtschaft ein, die zum Erhalt der biologi-

schen Vielfalt beiträgt und im Einklang mit der Natur wirtschaftet. Viele landwirtschaftliche und gartenbauliche Betriebe sind sich dieser Verantwortung bewusst und stellen sich den Herausforderungen der sich stetig wandelnden Märkte und einer umwelt-, tier- und klimagerechten Modernisierung.

Die Landesregierung unterstützt ambitionierte Umweltstandards, nachhaltige Wettbewerbsfähigkeit und eine den ökologischen Herausforderungen gerecht werdende Landbewirtschaftung auf vielfältige Weise. Hierzu zählen u.a. die umfangreichen Förderangebote aus dem NRW-Programm Ländlicher Raum z.B. zur Förderung tiergerechter Haltungsverfahren, freiwilliger Agrarumwelt- und Vertragsnaturschutzmaßnahmen sowie zum Ökologischen Landbau.

A. Flächennutzung durch Landwirtschaft

Zahlen zur Flächennutzung durch die Landwirtschaft sowie zur Tierhaltung werden im Rahmen der amtlichen Agrarstatistik auf Grundlage des Agrarstatistikgesetzes durch den Landesbetrieb Information und Technik Nordrhein-Westfalen (IT.NRW)¹ erhoben. Dort sind bundeseinheitliche Vorgaben u.a. zu Erhebungseinheiten, zur Periodizität, regionalen Tiefe und zu Abschneidegrenzen getroffen, die je nach Erhebungsform (Vollzählung aller Betriebe oder Zwischenzählung als Stichprobe) und durch Änderungen des Gesetzes im Zeitverlauf teilweise voneinander abweichen. Daher sind die Daten zur Landbewirtschaftung sowie zu den Viehbeständen aus den einzelnen Erhebungen nicht immer durchgängig miteinander vergleichbar und in der gewünschten Tiefe verfügbar.

1. Wie hoch ist der Anteil von ackerbaulichen Flächen im Vergleich zu Dauergrünland absolut und relativ?

Nach der letzten repräsentativen Agrarstrukturerhebung 2013 (Landwirtschaftliche Betriebe mit mindestens 5 Hektar (ha) landwirtschaftlich genutzter Fläche, sowie Betriebe mit pflanzlichen Mindestanbauflächen für Sonderkulturen oder tierischen Mindesttierbeständen) beträgt die landwirtschaftlich genutzte Fläche in NRW 1.463.031 ha, davon sind 1.065.385 ha Ackerland (72,8 %) und 384.222 ha Dauergrünland (26,3 %).

- 2. Wie hoch ist jeweils der Flächenanteil für die 10 wichtigsten Ackerkulturen? (Angabe nach Kreisen und kreisfreien Städten?)
 - a. Regional
 - b. Im Zeitraum von 1990 bis 2013

a. Regional

Zu den 10 wichtigsten Ackerkulturen in Nordrhein-Westfalen gehören nach Angaben der Bodennutzungshaupterhebung 2010 die folgenden Kulturen (Reihenfolge in Abhängigkeit der Anbaubedeutung):

- 1. Winterweizen (283.570 ha /26,9 % der Ackerfläche)
- 2. Wintergerste (161.773 ha /15,4 % der Ackerfläche)

¹ Alle verwendeten Abkürzungen sind dem Abkürzungsverzeichnis im Anhang zu entnehmen.

- 3. Silomais (159.586 ha /15,2 % der Ackerfläche)
- 4. Körnermais (98.575 ha / 9,4 % der Ackerfläche)
- 5. Winterraps (68.058 ha / 6,5 % der Ackerfläche)
- 6. Triticale (57.236 ha / 5,4 % der Ackerfläche)
- 7. Zuckerrüben (53.743 ha / 5,1 % der Ackerfläche)
- 8. Feldgras/Grasanbau (38.226 ha / 3,6 % der Ackerfläche)
- 9. Kartoffeln (31.074 ha / 3,0 % der Ackerfläche)
- 10. Gemüse und andere Gartenbauerzeugnisse (26.965 ha /2,6 % der Ackerfläche)

Insgesamt nehmen diese Kulturen 66,9 % der landwirtschaftlich genutzten Fläche bzw. 93 % der Ackerfläche in Nordrhein-Westfalen ein.

Die Angaben zur Anbaufläche der 10 wichtigsten Ackerkulturen auf Ebene der Kreise und kreisfreien Städte sind den beigefügte Tabellenübersichten im Anhang zu entnehmen (siehe Tabellen B1-B11 zu Frage 2: Bodennutzungshaupterhebungen 1991– 2010).

b. Im Zeitraum von 1990 bis 2013

Im Zeitraum 1991 – 2010 ist die Gesamtanbaufläche der 10 wichtigsten Ackerkulturen von 930.169 ha auf 978.806 ha angestiegen (+5,2 %). Der Anteil dieser Kulturen an der gesamten Ackerfläche stieg von 84,7 % im Jahr 1991 auf 93 % im Jahr 2010. Am prozentual stärksten wurde die Anbaufläche für Feldgras erweitert (+131 %). Im selben Zeitraum wurde auch die Anbaufläche für Körnermais (+35,73 %) und Kartoffeln (+36,86 %) ausgeweitet. Die Anbaufläche für Zuckerrüben (-32,44 %) und Wintergerste (-27,78 %) ging gegenüber 1991 in Nordrhein-Westfalen zurück.

Obwohl sich die Anbauflächen der wichtigsten Ackerkulturen im Zeitraum 1991-2010 verändert haben, blieben die Flächenanteile der Kulturen untereinander relativ konstant (siehe Grafik).

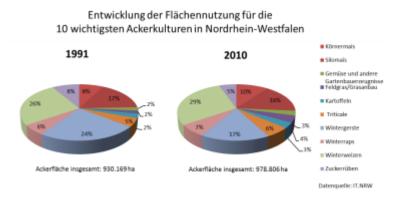


Abbildung 1 Entwicklung der Flächennutzung für die 10 wichtigsten Ackerkulturen in Nordrhein-Westfalen

Bei Wintergerste, Zuckerrüben, Silomais gingen die Flächenanteile zurück. Winterweizen, Winterraps, Körnermais, Triticale, Feldgras, Kartoffeln sowie Gemüse und andere Gartenbauerzeugnisse haben Flächenanteile gewonnen.

- 3. Wie hoch ist der Grünlandverlust / Grünlandumbruch in NRW seit 1970?
 - a. Quantitative Erfassung
 - b. Regionale Entwicklung der (Land)Kreise

Quantitative Erfassung

Nach Angaben der Landwirtschaftszählung 2010 beträgt die Dauergrünlandfläche in Nordrhein-Westfalen 396.792 ha. Dies entspricht einem Anteil von 27,1 % an der gesamten landwirtschaftlichen Fläche. In der Agrarberichterstattung 1974/75 wird die Dauergrünlandfläche mit 648.108 ha angegeben (37,3 % der landwirtschaftlich genutzten Fläche (LF)). Gegenüber dem Berichtsjahr 1974/75 hat die Gesamtfläche des Dauergrünlandes in NRW somit um 251.316 ha abgenommen. Dies entspricht einer Abnahme um -38,8 %. Aufgrund methodischer Änderungen bei der Flächenerfassung kann aktuell kein Bezug zur Agrarberichterstattung vor 1974 bzw. nach 2010 hergestellt werden.

Die Repräsentative Agrarstrukturerhebung 2013 weist für Nordrhein-Westfalen 384.222 ha Dauergrünland aus. Dies entspricht einem Anteil von 26,3 % an der gesamten landwirtschaftlichen Fläche.

Mit dem Inkrafttreten der Verordnung zum Erhalt von Dauergrünland (DGL-VO NRW) besteht in Nordrhein-Westfalen seit dem 12. Januar 2011 grundsätzlich ein landesweites Umbruchverbot für Dauergrünland. Nur mit schriftlicher Genehmigung und bei gleichzeitiger Neuanlage einer mindestens gleich großen Dauergrünland-Ersatzfläche im selben Naturaum darf Dauergrünland umgebrochen werden. Zur Überwachung des Umbruchsverbotes führt der Direktor der Landwirtschaftskammer als Landesbeauftragter (DLWK) ein Dauergrünland-Kataster.

Regionale Entwicklung der (Land)Kreise

Die stärkste Abnahme des Dauergrünlandes hat zwischen den Berichtsjahren 1974/75 und 2010 in den Regierungsbezirken Münster und Detmold stattgefunden (siehe Tabelle A1). Hier sank der Grünlandanteil um -69,6 % bzw. -50%. Die geringste Abnahme hat im Regierungsbezirk Köln stattgefunden (-12,6 %).

Tabelle A1: Dauergrünland in Nordrhein-Westfalen - Veränderungen 2010 gegenüber 1974/75

Dauergrünland in Nordrhein-Westfalen					
Regierungsbezirk		rung 2010 er 1974/75			
	ha	%			
Münster	-128115,88	-69,6			
Detmold	-64693,57	-50			
Düsseldorf	-27043,63	-31,6			
Amsberg	-20857,58	-20857,58 -12,7			
Köln	-15733,86	· · · ·			

Alle Angaben zur regionalen Entwicklung der Dauergrünlandfläche in den Kreisen sind den beigefügten Tabellenübersichten im Anhang zu entnehmen (siehe Tabelle B12 zu Frage 3: Agrarberichterstattung 1974/75 sowie Landwirtschaftszählungen 1979, 1991, 1999 und

2010: Dauergrünland der landwirtschaftlichen Betriebe sowie prozentualer Anteil des Dauergrünlandes an der LF in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*).

4. Wie hat sich der Maisanbau im Vergleich zu übrigen Kulturen entwickelt?

Im Jahr 2013 wurden in Nordrhein-Westfalen insgesamt 284.424 ha Mais (Körner- und Silomais) angebaut. Für das Berichtsjahr 1991 werden 226.747 ha Mais angegeben. Dies entspricht einer Zunahme der Anbaufläche um insgesamt 25,4 %. Die Anbaufläche von Körnermais stieg dabei von 72.623 ha im Jahr 1991 auf 103.927 ha in 2013 an (+43,10 %). Der Anstieg der Anbaufläche für Silomais fiel im selben Zeitraum mit +17,11 % geringer aus. Hier stieg die Anbaufläche von 154.124 ha 1991 auf 180.497 ha im Jahr 2013 an.

Das Verhältnis der Maisanbaufläche zu den wichtigsten Ackerkulturen geht aus der Grafik zu Frage A.2 hervor.

5. Auf wie viel Prozent der Nutzfläche wird Mais angebaut?

Nach der letzten repräsentativen Agrarstrukturerhebung 2013 beträgt die landwirtschaftlich genutzte Fläche in NRW 1.463.031 ha, davon werden auf 284.424 ha Mais angebaut (19,4 %). Auf Silomais entfallen 180.497 ha (12,3 %) auf Körnermais 103.927 ha (7,1 %). Schwerpunkte des Maisanbaus liegen in den Kreisen des westlichen Münsterlands (Borken, Coesfeld, Steinfurt) und am Niederrhein (Kleve). In Borken und Kleve hat der Maisanbau in den letzten 10 Jahren um etwa 20% zugenommen.

- 6. Wie haben sich die Tierbestände der wichtigsten Nutztiere (Milchvieh, Schweine, Hähnchen, Puten, Hennen) entwickelt?
 - regional nach Kreisen
 - im Zeitraum 1990 2013

Zur Beantwortung der Frage nach der Entwicklung der Tierbestände wurden die verfügbaren Daten in der beigefügten Tabelle so aufbereitet, dass eine Vergleichbarkeit für den gewünschten Zeitraum weit möglichst gegeben ist. Da die letzte Vollzählung aller Betriebe im Jahr 2010 erfolgte und die nächste erst im Jahr 2016 stattfindet, können aktuell (2013) aufgrund des Stichprobencharakters der Zwischenzählungen zu den Schweinen, Hähnchen, Puten und Hennen nur Angaben bis auf Ebene der Regierungsbezirke (Reg.-Bez.) gemacht werden.

Die Aufstellung zeigt, dass sich die Anzahl der gehaltenen Tiere im Betrachtungszeitraum in der überwiegenden Zahl der Kreise bei den meisten Tierarten verringert hat. Festzustellen ist aber auch, dass sich die Tierzahlen einzelner Regionen in den letzten Jahren deutlich erhöht haben und insbesondere die Bestände bei den Schweinen und beim Mastgeflügel gestiegen sind. Vereinzelt ist in jüngster Vergangenheit auch ein deutlicher Anstieg bei Milchkühen zu verzeichnen.

Tabelle A2: Tierbestände in Nordrhein-Westfalen

Verwaltungsbezirk	Jahr	Schweine	Milchkühe	Masthühner	Truthühner	Hennen
Kreis Kleve	1991	350 189	41 460	82 816		103 800
	1995	308 951	40 719	56 983	329 582	95 235
	1999	324 470	40 487	37 093	359 924	78 200
	2003	298 808	41 054	91 404	403 804	98 660
	2007	290 232	41 513	86 978	393 489	86 697
	2010	301 172	46 715	107 114	456 563	54 781
	2013		55 583			
Kreis Mettmann	1991	13 093	2 648	82 816		78 955
	1995	9 458	2 307	56 983	581	76 820
	1999	5 953	1 621	37 093	28	82 058
	2003	5 236	1 723	91 404	3	52 148
	2007	3 183	1 553	86 978	44	105 731
	2010	2 958	1 633	107 114	24	28 190
	2013		1 581			
Rhein-Kreis Neuss	1991	28 586	4 116	717		102 259
	1995	23 066	3 721	970	426	98 858
	1999	17 939	2 780	949	4	66 664
	2003	16 054	2 181	453	160	57 046
	2007	15 661	1 840	1 689	120	39 575
	2010	12 046	1 988	708	183	37 231
	2013		1 869			
Kreis Viersen	1991	91 220	14 354	57		86 249
	1995	71 498	14 046	23 207	1 862	62 840
	1999	71 260	13 148	74 174	1 290	45 255
	2003	62 400	13 261	123 307	293	38 956
	2007	70 423	13 829	118 833	30	28 414
	2010	73 636	14 869	92 163	59	25 885
	2013		15 202			
Kreis Wesel	1991	176 863	27 210	52 580		238 063
	1995	150 388	25 401	91 853	95 056	107 896
	1999	132 440	23 205	71 894	102 823	243 806
	2003	120 566	22 431	113 183	164 630	182 706
	2007	113 329	21 731	111 087	99 863	123 630
	2010	126 561	24 757	94 193	113 079	142 107
	2013		28 209			
RegBez. Düsseldorf	2013	592 154		309 541	520 533	484 330
Städteregion Aachen	1991	9 483	15 368	1 189		52 013
	1995	5 865	14 498	59	270	45 790
	1999	4 214	13 499	340	45	36 442
	2003	3 635	12 738	510	11	28 121
	2007	2 852	12 443	388	3	19 433
	2010	2 815	12 892	82	20	14 015
	2013		13 265			
Kreis Düren	1991	23 261	10 958	959		81 013
	1995	20 113	9 557	539	375	53 253

Verwaltungsbezirk	Jahr	Schweine	Milchkühe	Masthühner	Truthühner	Hennen
	1999	16 111	7 748	689	1	87 461
	2003	12 383	6 674	1 445	5	84 741
	2007	6 874	6 146	1 313	14 015	57 767
	2010	6 016	6 062	366	13 015	71 913
	2013		5 480			
Rhein-Erft-Kreis	1991	18 412	1 907	2 166		104 574
	1995	12 880	1 523	598	23 493	95 278
	1999	10 489	1 142	6	50 424	86 621
	2003	9 541	973	649	65 113	74 449
	2007	8 055	945	350	46 109	56 639
	2010	7 639	917	104	46 303	56 865
	2013		765			i
Kreis Euskirchen	1991	14 183	17 279	14 305		76 581
	1995	9 511	15 515	26 085	22 695	62 477
	1999	8 085	13 032	272	23 076	46 627
	2003	5 439	12 535	198	26 054	38 266
	2007	4 205	11 535	82	23 047	37 019
	2010	3 665	12 480	95	21 053	150 178
	2013		12 743			
Kreis Heinsberg	1991	58 044	16 545	4 079		143 649
<u> </u>	1995	42 595	14 420	234	3 790	136 605
	1999	40 487	14 021	16 037	8 073	102 286
	2003	35 804	14 120	24 691	2 111	72 709
	2007	37 434	13 243	19 830	435	65 292
	2010	31 962	13 494	20 014	705	64 042
	2013		13 939		_	
Oberbergischer Kreis	1991	5 645	22 154	15 191	_	68 246
· · ·	1995	6 077	22 063	3 157	556	54 416
	1999	2 581	20 135	5 598	127	46 234
	2003	3 029	19 377	3 446	118	50 855
	2007	2 029	18 798	2 965	67	33 575
	2010	1 638	19 628	2 435	144	34 555
	2013		20 616			
Rheinisch-Bergischer Kreis	1991	3 695	9 977	313		78 571
	1995	1 911	9 096	2 062	243	54 941
	1999	2 823	7 814	1 141	45	47 081
	2003	2 981	7 427	1 987	52	44 580
	2007	2 242	7 252	389	60	33 010
	2010	1 751	7 032	625	20	19 000
	2013		7 108	3_3		
Rhein-Sieg-Kreis	1991	10 786	17 682	2 676	-	65 729
	1995	9 429	16 099	1 000	583	69 106
	1999	7 409	13 803	461	166	57 187
	2003	7 765	13 257	1 960	58	42 594
	2007	7 443	12 960	424	76	29 115
	2010	6 615	13 860	1 205	132	70 305
	2013	3 3 1 3	13 852	. 200	102	. 5 556

Verwaltungsbezirk	Jahr	Schweine	Milchkühe	Masthühner	Truthühner	Hennen
RegBez. Köln	2013	74 535		200 942	112 903	520 847
Kreis Borken	1991	651 168	49 828	62 689		429 718
	1995	656 997	45 979	260 908	134 035	386 154
	1999	752 645	41 907	670 818	115 990	427 827
	2003	790 161	39 528	654 603	96 196	376 622
	2007	829 746	38 293	796 762	143 461	345 078
	2010	890 726	40 539	960 204	127 329	432 137
	2013		42 945			
Kreis Coesfeld	1991	585 603	17 151	33 435		466 783
	1995	625 784	15 918	9 775	37 542	391 131
	1999	738 170	13 655	36 601	65 770	475 662
	2003	796 586	12 744	17 225	81 714	228 391
	2007	829 768	11 991	54 611	53 709	328 693
	2010	868 551	12 142	261 485	92 308	323 971
	2013		12 900			
Kreis Recklinghausen	1991	156 797	7 103	65 146		191 619
<u> </u>	1995	145 743	6 633	13 298	10 005	60 748
	1999	145 245	6 076	24 191	9 029	58 065
	2003	150 251	6 279	27 662	14 030	34 801
	2007	153 639	6 231	30 097	14 012	24 991
	2010	165 149	6 436	15 289	152	30 261
	2013		7 854			
Kreis Steinfurt	1991	690 086	32 165	29 954		403 168
	1995	731 340	28 402	85 403	20 323	303 688
	1999	865 948	23 017	127 236	5 517	432 389
	2003	900 250	19 923	308 506	6 206	384 175
	2007	916 906	17 200	131 245	513	335 470
	2010	969 547	18 036	487 523	20 554	322 049
	2013		18 363			
Kreis Warendorf	1991	657 263	20 345	132 172		310 308
	1995	683 549	18 225	137 646	100 269	202 646
	1999	794 159	15 114	132 545	87 134	371 429
	2003	801 327	14 112	147 361	155 017	206 879
	2007	815 718	12 708	91 386	162 853	192 489
	2010	870 040	12 834	312 335	162 253	118 937
	2013	0.00.0	13 678		. 02 200	
RegBez. Münster	2013	4 416 737	10010	2 785 461	407 322	1 396 812
	2010	1 110 707			.0. 022	. 300 012
Kreis Gütersloh	1991	263 875	24 458	753 462	_	454 918
	1995	254 421	22 205	409 507	75 140	341 182
	1999	269 503	19 640	195 310	95 289	369 772
	2003	268 258	17 860	354 275	84 054	287 993
	2007	266 064	17 576	342 536	80 009	262 065
	2010	276 505	17 733	371 138	116 491	329 767
	2013	2.0000	18 837	371130		020 101
Kreis Herford	1991	130 221	3 630	16 624	-	63 460

Verwaltungsbezirk	Jahr	Schweine	Milchkühe	Masthühner	Truthühner	Hennen
	1995	116 003	2 754	15 002	6 859	32 879
	1999	107 292	2 256	3 470	13 530	23 930
	2003	99 711	1 739	308	19 333	22 343
	2007	96 935	1 398	563	20 024	11 494
	2010	95 676	1 491	453	15 010	10 182
	2013		1 477			
Kreis Höxter	1991	245 746	17 836	419		33 696
	1995	250 619	14 678	25 371	10 544	28 324
	1999	260 906	12 111	15 802	7 755	20 692
	2003	261 534	10 099	375	16 089	17 854
	2007	264 224	9 084	158 878	16 018	11 027
	2010	275 973	9 023	289 135	17 820	14 062
	2013		9 080			
Kreis Lippe	1991	139 488	8 414	13 019		60 367
•	1995	128 401	7 676	8 138	9 672	63 795
	1999	126 791	6 630	8 034	4 644	53 139
	2003	129 464	5 622	6 637	537	33 950
	2007	122 472	5 330	70 649	133	21 959
	2010	132 928	5 519	117 004	134	23 444
	2013		6 092			
Kreis Minden-Lübbecke	1991	430 500	20 374	226 783		293 928
	1995	398 124	16 661	141 447	4 088	495 892
	1999	390 802	13 727	200 145	6 668	263 410
	2003	366 836	11 967	235 318	4 785	266 773
	2007	370 895	10 572	203 497	7 400	121 891
	2010	373 038	10 468	142 523	8 004	241 074
	2013	İ .	10 487			
Kreis Paderborn	1991	275 757	18 914	233 370		228 033
	1995	278 101	15 762	221 709	33 496	226 498
	1999	308 516	13 489	149 222	40 696	216 923
	2003	320 078	11 925	198 175	63 210	231 140
	2007	327 070	10 728	166 745	45 057	173 769
	2010	357 861	10 224	320 289	74 113	220 559
	2013		10 050			
RegBez. Detmold	2013	1 576 282		1 337 424	152 866	727 909
Ennepe-Ruhr-Kreis	1991	10 133	6 820	1 383	,	140 471
	1995	7 730	5 932	184	86	139 613
	1999	8 113	5 263	297	21	127 172
	2003	8 099	4 869	385	59	134 742
	2007	7 455	4 027	197	35	132 653
	2010	5 847	4 277	59	31	51 586
	2013		4 150	30	0.	2.000
Hochsauerlandkreis	1991	48 906	25 274	306	•	61 389
	1995	48 207	24 310	345	15 214	57 743
	1999	51 004	23 196	1 097	21 728	51 185
	2003	55 256	21 499	588	57 595	36 254

Verwaltungsbezirk	Jahr	Schweine	Milchkühe	Masthühner	Truthühner	Hennen
	2007	50 145	20 614	150	48 822	38 144
	2010	51 848	22 466	40 569	76 837	33 151
	2013		23 979			
Märkischer Kreis	1991	33 386	11 640	632		60 791
	1995	34 388	12 176	601	1 061	57 774
	1999	39 459	11 460	1 382	588	55 549
	2003	39 196	10 894	1 188	1 282	54 943
	2007	43 273	11 076	899	142	40 360
	2010	40 077	11 706	1 024	112	37 609
	2013		12 556			
Kreis Olpe	1991	11 074	6 969	37		32 786
	1995	10 255	6 535	69	178	31 812
	1999	11 624	5 347	125	264	23 641
	2003	11 023	5 098	114	279	25 767
	2007	10 007	4 540	256	3	22 287
	2010	8 983	5 122	529	5	13 788
	2013		5 439			
Kreis Siegen-Wittgenstein	1991	3 417	6 357	525		29 088
	1995	2 943	6 165	198	158	14 762
	1999	2 551	4 941	316	94	15 117
	2003	2 781	4 543	211	19	13 801
	2007	1 474	3 990	165	114	9 912
	2010	1 325	4 214	164	40	6 573
	2013		4 473			
Kreis Soest	1991	321 514	13 449	754		82 927
	1995	320 373	11 951	63 681	99 678	89 891
	1999	343 141	10 317	87 732	72 523	70 373
	2003	346 398	9 147	266 104	80 694	70 312
	2007	352 004	8 924	399 684	83 369	94 237
	2010	357 501	9 462	653 249	85 709	92 384
	2013		9 828			
Kreis Unna	1991	102 080	4 330	11 616		189 016
	1995	106 557	3 949	13 183	30 657	189 831
	1999	119 966	3 169	11 870	23 859	119 343
	2003	122 577	2 850	3 519	48 908	82 891
	2007	123 257	2 149	10 301	37 200	87 973
	2010	137 606	2 303	54 447	44 013	121 554
	2013		2 246			
RegBez. Arnsberg	2013	714 676		552 510	468 418	343 272

Erläuterungen: Zahlen für die Jahre 1991 bis 2007 wurden an die Kriterien der letzten Vollerhebung 2010 angepasst, um eine Vergleichbarkeit zu erreichen. Für das Jahr 2013 liegen für Schweine, Masthühner, Truthühner und Hennen nur Daten aus repräsentativen Erhebungen bis auf Ebene der Bezirksregierungen mit Stichtag 1. November vor.

B. Landwirtschaft und Umweltmedium - Boden

- 1. Düngemittel Gülle Gärreste
- 7. Wie verhält sich die Entwicklung der in der Landwirtschaft eingesetzten Nährstoffe N und P_2O_5 in:
 - Mineraldüngern,
 - Wirtschaftsdüngern,
 - Gärresten
 - Stickstoffeinträgen durch die Luft

Mineraldünger

Zum <u>Einsatz</u> von **Mineraldünger** in der Landwirtschaft sind der Landesregierung keine Daten bekannt. Die amtliche Düngemittelstatistik (Statistisches Bundesamt, Fachserie 4 Reihe 8.2) enthält Angaben zum <u>Absatz</u> von Mineraldüngern auf Ebene der Bundesländer (BL), wobei Ort und Zeit des Absatzes und Ort und Zeit des Einsatzes nicht identisch sein müssen (u.a. wegen Lagerhaltung oder "Durchhandeln" von Partien auf den Handelsstufen entlang der Rheinschiene). Es handelt sich dabei um Lieferungen der Produzenten und Importeure an Absatzeinrichtungen (z.B. Genossenschaften, privater Landhandel) oder Endverbraucher. Diese Mengen sind nicht mit dem tatsächlichen Verbrauch in der Land- und Forstwirtschaft sowie im Gartenbau in NRW identisch. In Nordrhein-Westfalen wurden folgende Nährstoffmengen über Mineraldünger abgesetzt:

Tabelle A3: Mineraldüngerabsatz in NRW

Wirtschaftsjahr	t P ₂ O ₅	t N
89/90	109.985	272.748
90/91	82.606	231.453
91/92	74.255	261.548
92/93	63.023	274.174
93/94	52.392	239.398
94/95	47.158	226.718
95/96	45.763	217.026
96/97	46.238	211.845
97/98	38.567	218.014
98/99	46.870	269.018
99/00	48.215	262.340
00/01	34.926	214.299
01/02	31.568	200.988
02/03	55.642	189.376
03/04	35.583	188.073
04/05	20.109	163.591
05/06	17.260	173.002
06/07	13.562	148.926
07/08	31.289	164.920
08/09	17.832	147.351
09/10	22.039	147.834
10/11	30.094	189.332

Wirtschaftsjahr	t P ₂ O ₅	t N
11/12	18.309	147.417
12/13	22.284	148.327

Seit 1989/1990 sind z.T. große jährliche Schwankungen und ein zunächst kontinuierlicher Rückgang des Stickstoff- (N) und Phosphat- (P) Mineraldüngerabsatzes in NRW zu verzeichnen. In den letzten fünf Jahren bewegt sich die abgesetzte Nährstoffmenge auf einem relativ stabilen Niveau. Umgerechnet auf die landwirtschaftlich genutzte Fläche beläuft sich der Mineraldüngerabsatz im Wirtschaftsjahr 2012/2013 auf rund 100 kg N je ha bzw. 15 kg Phosphat (P_2O_5) je ha. Die im Wirtschaftsjahr 2012/2013 abgesetzte Stickstoffmenge liegt bei 54,4 % des Stickstoffabsatzes aus dem Wirtschaftsjahr 1989/1990, die in 2012/2013 abgesetzte Phosphatmenge umfasst nur noch 20,3 % des P-Absatzes aus 1989/1990.

Wirtschaftsdünger

Daten zum <u>Einsatz</u> von Nährstoffen aus Wirtschaftsdüngern liegen nicht vor. Die Entwicklung des Nährstoff<u>anfalls</u> aus Wirtschaftsdüngern wurde auf Basis der jeweiligen Tierzahlen der Agrarstatistik berechnet. Der Nährstoffanfall aus Wirtschaftsdüngern ist regional sehr unterschiedlich verteilt (siehe auch Antwort 10) und konzentriert sich in den Kreisen Borken, Coesfeld, Steinfurt und Warendorf, wo vor allem die Anzahl der gehaltenen Schweine sowie am Niederrhein (Kreise Kleve und Wesel), wo die Anzahl der Milchkühe deutlich zugenommen hat (siehe auch Antwort 6).

Tabelle A4: Stickstoff-Anfall in der Tierhaltung in NRW* (Angaben in kg N)

Jahr	Rinder	Schweine	Geflügel	Schafe	Pferde	Summe
1990	101.106.746	43.375.147	4.414.917	2.679.478	2.570.992	154.147.280
1991	94.395.995	41.057.763	-	2.413.854	-	137.867.612
1992	93.021.330	42.780.581	4.426.206	2.640.819	2.847.341	145.716.277
1993	90.780.735	42.501.564	-	2.519.509	-	135.801.808
1994	92.128.277	41.449.033	4.290.430	2.554.914	3.216.340	143.638.994
1995	90.912.666	40.980.885	-	2.480.663	-	134.374.213
1996	89.379.852	41.550.548	4.286.051	2.405.164	3.499.920	141.121.535
1997	86.106.874	41.880.380	-	2.324.322	-	130.311.575
1998	83.123.464	44.545.893	-	0	-	127.669.357
1999	81.729.087	44.099.029	4.168.824	2.437.097	2.235.241	134.669.278
2000	78.841.909	43.301.635	-	2.209.977	-	124.353.521
2001	79.407.128	43.159.444	4.196.162	2.339.696	2.468.287	131.570.717
2002	75.454.021	42.719.374	-	2.134.094	-	120.307.489
2003	75.130.204	44.313.630	4.259.081	2.325.164	2.902.716	128.930.795
2004	73.223.433	42.591.088	-	2.402.285	-	118.216.806
2005	73.431.773	48.012.240	3.957.229	2.286.900	-	127.688.142
2006	70.366.260	44.913.201	-	2.091.474	-	117.370.935
2007	71.337.931	46.603.264	3.858.760	2.076.526	2.816.841	126.693.322
2008	75.078.340	46.365.100	-	1.807.691	-	123.251.131
2009	75.654.859	48.080.236	-	1.890.851	-	125.625.945
2010	75.259.283	45.183.288	4.394.781	1.422.379	-	126.259.731
2011	74.816.360	43.843.793	-	1.369.022	-	120.029.175

Jahr	Rinder	Schweine	Geflügel	Schafe	Pferde	Summe
2012	75.045.172	48.891.033	-	1.353.429	-	125.289.634
2013	77.065.813	50.225.343	-	1.353.429	-	128.644.586

^{* =} nach Abzug der Stall- und Lagerungsverluste

Tabelle A5: Phosphat-Anfall in der Tierhaltung in NRW (Angaben in kg P₂O₅)

Jahr	Rinder	Schweine	Geflügel	Schafe	Pferde	Summe
1990	41.720.868	23.699.846	3.779.229	1.446.828	2.175.582	72.822.353
1991	38.920.619	22.442.199	-	1.303.400	ı	62.666.217
1992	38.320.794	23.363.949	3.785.216	1.425.953	2.406.794	69.302.707
1993	37.397.377	23.109.388	-	1.360.450	-	61.867.216
1994	37.960.784	22.495.234	3.663.532	1.379.568	2.717.531	68.216.649
1995	37.393.676	22.231.088	-	1.339.474	1	60.964.239
1996	36.704.203	22.529.831	3.667.256	1.298.708	2.957.541	67.157.539
1997	35.358.038	22.730.067	-	1.255.056	ı	59.343.160
1998	34.081.911	24.119.412	-	0	1	58.201.324
1999	33.549.739	23.889.132	3.586.020	1.315.951	1.892.476	64.233.316
2000	32.342.427	23.448.403	-	1.193.313	-	56.984.143
2001	32.639.832	23.389.671	3.608.252	1.263.357	2.089.395	62.990.506
2002	31.029.430	23.131.132	-	1.152.339	ı	55.312.901
2003	30.910.263	23.939.657	3.678.408	1.255.510	2.456.910	62.240.748
2004	30.113.430	22.998.776	-	1.297.153	1	54.409.359
2005	30.186.640	25.864.705	3.391.080	1.234.849	-	60.677.274
2006	28.976.071	24.180.774	-	1.129.326	1	54.286.171
2007	29.354.029	25.072.773	3.319.174	1.121.254	2.385.385	61.252.616
2008	30.886.605	24.886.746	-	976.092	-	56.749.443
2009	31.096.124	25.781.778	-	1.020.996	-	57.898.897
2010	30.917.907	24.235.488	3.755.504	768.037	-	59.676.935
2011	30.743.159	23.501.678	-	739.226	-	54.984.062
2012	30.846.101	26.040.262	-	730.806	-	57.617.169
2013	31.704.801	26.701.119	-	730.806	-	59.136.727

^{- =} keine Daten

Gärreste

Angaben zu den in Gärresten von Biogasanlagen enthaltenen Nährstoffen sind mit Unsicherheiten behaftet, da sie lediglich indirekt ermittelt werden können. Die in den Gärresten enthaltenen Nährstoffe aus Wirtschaftsdüngern sind bereits durch die Berechnung der in der Tierhaltung anfallenden Nährstoffe berücksichtigt. Darüber hinaus werden pflanzliche Substrate ("NaWaRo - nachwachsende Rohstoffe") und Bioabfälle in den Biogasanlagen vergoren. Die in den pflanzlichen Substraten enthaltenen Nährstoffmengen lassen sich näherungsweise aus der bekannten, installierten elektrischen Leistung der landwirtschaftlichen Biogasanlagen berechnen. Für Biogasanlagen mit Vergärung von Abfällen liegen keine ent-

^{- =} keine Daten

sprechenden Daten oder Schätzungen vor, jedoch beträgt ihr Anteil an der Zahl der Biogasanlagen lediglich ca. 5 %.

Für die Zeit vor 1998 liegen keine Daten vor. Für den genannten Zeitraum ergeben sich demnach folgende Nährstoffmengen aus pflanzlicher Herkunft (Energiepflanzen):

Nährstoffe pflanzlicher Herkunft aus Biogasanlagen Tabelle A6:

Jahr	kg N	kg P ₂ O ₅
1998	199.943	84.420
1999	266.590	112.560
2000	333.238	140.700
2001	866.419	365.821
2002	1.133.009	478.382
2003	1.399.599	590.942
2004	2.066.075	872.343
2005	3.265.732	1.378.865
2006	4.465.389	1.885.386
2007	5.331.807	2.251.208
2008	6.997.997	2.954.710
2009	8.397.597	3.545.652
2010	11.396.738	4.811.956
2011	15.862.127	6.697.343
2012	16.661.898	7.035.024
2013	19.308.799	8.152.604

Der Anteil der Nährstoffe pflanzlicher Herkunft aus Biogasanlagen am Gesamtaufkommen von Nährstoffen aus Wirtschaftsdüngern beträgt demnach im Jahr 2013 bei N ca. 13% und bei P₂O₅ ca. 12%.

Stickstoffeinträge aus der Luft

Bezüglich Stickstoffeinträgen durch die Luft liegen einerseits Daten zu gasförmigen Stickstoff-Emissionen aus der Landwirtschaft vor; andererseits zu Gesamt-Einträgen (Immissionen) von Stickstoff durch die Luft.

Stickstoff-Emissionen in die Luft treten zum größten Teil in Form von Ammoniak-Emissionen (NH₃) bei der Tierhaltung sowie der Lagerung und Ausbringung von Wirtschaftsdüngern auf. Daneben treten kleinere Mengen von gasförmigen Stickstoffverlusten in Form von Lachgas (N2O) und Stickoxiden aus landwirtschaftlichen Böden aus. Lachgas ist dabei weniger als Stickstoff-Quelle, vielmehr als starkes Treibhausgas von Bedeutung. Daten zu diesen Emissionen werden vom Thünen-Institut für Agrarrelevante Klimaforschung in Braunschweig im Rahmen des deutschen Treibhausgas-Emissionsinventars² ermittelt. Die Abbildungen (Abb.) zeigen die Entwicklung der Gesamt-Emissionen von reaktivem Stickstoff aus der Landwirtschaft in NRW, sowie die Entwicklung bei Ammoniak-Stickstoff nach Tierarten. Alle dargestellten Zahlen sind - nur zur besseren Verständlichkeit der Größenordnung - auf die landwirtschaftliche Nutzfläche (2010) bezogen. Nach einem Rückgang in den 90er Jahren, sind

² Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2014, Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 – 2012. http://www.ti.bund.de/fileadmin/dam_uploads/vTI/Publikationen/Thuenen%20Report/Thuenen_Report 17-Internet.pdf

die gasförmigen Stickstoff-Emissionen aus der Landwirtschaft in den letzten Jahren relativ konstant.

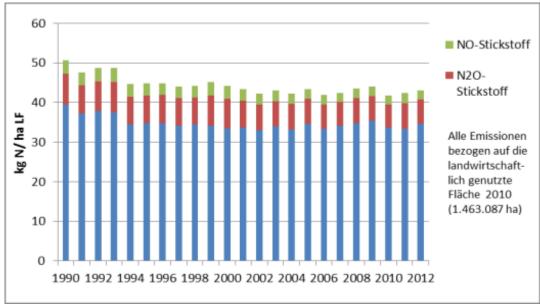


Abbildung 2: Reaktiver Stickstoff: Emissionen aus der Landwirtschaft in NRW

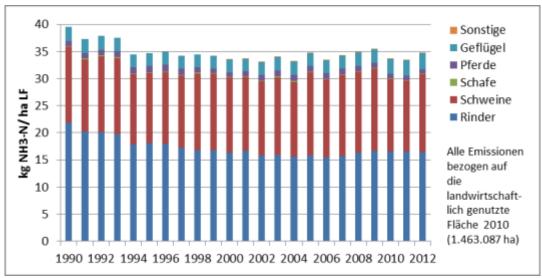


Abbildung 3: Ammoniak-Stickstoff: Emissionen aus der Landwirtschaft in NRW

An den Gesamt-Stickstoff-Emissionen in die Luft hat die Landwirtschaft in Deutschland nach Schätzungen des Umweltbundesamtes (UBA) einen Anteil von etwa 57 %, der Rest stammt zu etwa gleichen Teilen aus den Sektoren Verkehr sowie Industrie/Energie. Für Stickstoffeinträge durch die Luft spielt außerdem auch die Verfrachtung aus anderen Regionen eine Rolle; in NRW gilt das für N-Verfrachtung mit der Luft aus den Niederlanden (NL).

Stickstoffeinträge unterscheiden sich regional und kleinräumig sehr stark, da sie sowohl von der Nähe zu Emissionsquellen, als auch von der Höhe der Niederschläge und der Landnutzung abhängen. Sie finden als "nasse Deposition" mit dem Niederschlag sowie als "trockene Deposition" statt.

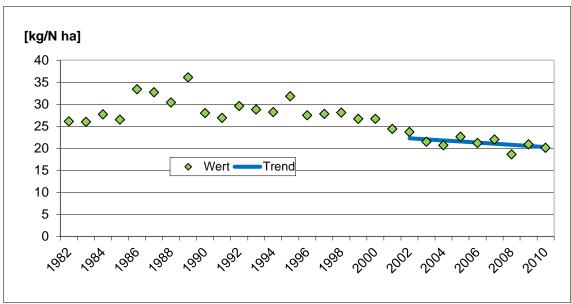


Abbildung 4: Stickstoffeintrag in Waldgebieten in NRW³

Das LANUV misst seit 1982 den Stickstoffeintrag in Waldgebieten in NRW (siehe Abb. 4). Die Messung erfolgt gegenwärtig an acht Waldmessstationen. Der Indikator erfüllt nicht die strengen Anforderungen an eine flächenhafte Repräsentanz; durch die Verteilung der Messorte auf die großen forstlichen Wuchsgebiete und typische Einzelstandorte im Tief- und Bergland ist er aber dennoch für die Beobachtung der Entwicklung geeignet. Ein Teil der trockenen Stickstoffdeposition wird bei dieser Mess-Methode nicht erfasst, so dass die tatsächliche Deposition noch etwas höher liegt. Die für die Messung der vollständigen Deposition nötigen Flussmessstationen werden in NRW nicht dauerhaft betrieben. Die Daten werden regelmäßig veröffentlicht⁴. Seit den 90er Jahren hat es in den Waldgebieten einen Rückgang gegeben, für die letzten Jahre ergibt sich ein konstanter Trend. Eine Aussage zur Entwicklung außerhalb von Waldgebieten ist nicht möglich.

Die Messungen des LANUV werden – zusammen mit weiteren Daten – auch für die Modelierung der Stickstoff-Hintergrundbelastung durch das UBA verwendet⁵. Je nach Region und Landnutzungsklasse liegt die Stickstoff-Deposition in NRW danach zwischen etwa 15 kg N/ha (Landnutzungsklasse Acker oder Wiese, Zülpich) und 53 kg (Laubwald, westliches Münsterland). Es wird vermutet, dass diese Werte die Deposition leicht überschätzen – das UBA arbeitet derzeit an einer weiteren Verbesserung der Methodik. Die von Ökosystemen tolerierbaren Belastungsgrenzen für eutrophierende Stickstoffdepositionen (Critical Loads) werden in weiten Teilen von NRW überschritten, in den Regionen mit intensiver Tierhaltung nicht selten um den Faktor 2 oder 3.

_

³ http://www<u>.lanuv.nrw.de/umweltindikatoren-nrw/index.php?indikator=28&mode=indi&aufzu=4</u>

⁴ http://www.lanuv.nrw.de/umweltindikatoren-nrw/

⁵ http://gis.uba.de/website/depo1/

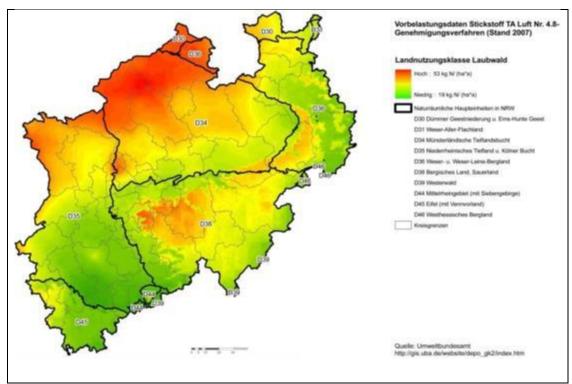


Abbildung 5: Karte der nationalen Stickstoff-Vorbelastung (Depositionsdaten für das Jahr 2007- Landnutzungsklasse Laubwald; UBA, 2014)

8. Welche Erkenntnisse hat die Landesregierung über die Ausbringungsmengen und Ausbringungszeiträume für Gülle und Gärreste?

Im Rahmen der Bodennutzungshaupterhebung für das Jahr 2011 wurde eine Erhebung über die Ausbringung von Wirtschaftsdünger an einer Stichprobe von maximal 40.000 landwirtschaftlichen Betrieben deutschlandweit durchgeführt⁶. Dabei wurden unter anderem die Ausbringungsmengen und -zeiträume für Wirtschaftsdünger auf Landesebene erfasst.

In NRW wurden danach 2010 insgesamt 21.794.000 m^3 Gülle, Jauche und flüssige Gärreste ausgebracht, davon 9.641.000 m^3 im Zeitraum Februar-März, 10.705.000 m^3 von April-September und 1.447.000 m^3 von Oktober bis November.

9. Wie hoch sind die Mengen an importierter Gülle aus den Niederlanden (Zeitraum 1990 bis 2013)?

Konsistente Daten für die Entwicklung der Wirtschaftsdüngerimporte für den Zeitraum 1990-2013 liegen der Landesregierung nicht vor. Rechtliche Grundlagen, Anforderungen und Genehmigungs- und Kontrollverfahren haben sich in dieser Zeit mehrfach geändert. Tabelle A7 gibt eine Übersicht über die verfügbaren Importdaten und deren Grundlage:

-

⁶ Statistisches Bundesamt, Fachserie 3, Reihe 2.2.2, 2011

Tabelle A7: Rechtliche Grundlagen für Importe aus NL und verfügbare Daten

Zeitraum	Rechtliche Grundlage für Importe	Zuständigkeit	Daten
1990- 1994	Kein Genehmigungsverfahren		Liegen nicht vor
1994- 7/2007	Notifizierungsverfahren auf Grundlage EU- Abfallverbringungsverordnung (VO (EWG) Nr. 259/93)	Bezirksregierungen	Auswertungen der im- portierten und geneh- migten Mengen liegen für die Jahre 1996 bis 6/2007 vor
8/2007- 1/2009	Genehmigungen nach Tier- seuchenrecht VO (EG) 1774/2002	Einzelgenehmigungen durch MUNLV	Keine statistische Er- fassung der Import- mengen
1/2009- 8/2011	Genehmigungen nach Tierseuchenrecht VO (EG) 1774/2002 bzw. ab 2011 nach VO (EG) 1069/2009	Genehmigung durch LANUV unter Beteili- gung des DLWK	Daten aus Genehmigungen des LANUV liegen ab 1/2010 vor
8/2011- heute	Genehmigungen nach Tierseuchenrecht VO (EG) 1069/2009 nur noch für unverarbeitete Gülle (v.a. Hühnertrockenkot (HTK))	Genehmigung durch LANUV unter Beteili- gung des DLWK	Daten aus Genehmi- gungen des LANUV liegen vor
2011- 2013	Daten aus NL (Digitales Dossier) auf Grundlage einer Vereinbarung (Memorandum of understanding) zwischen NRW und NL	Auswertung durch den DLWK	Daten auf Grundlage der angemeldeten Ex- porte liegen vor
Ab 2011	Wirtschaftsdüngerverordnung (WDüngV)	DLWK	Meldungen nach § 4 WDüngV

Tabelle A8 zeigt die Importmengen für Wirtschaftsdünger tierischer Herkunft aus den Niederlanden in Tonnen Frischmasse pro Jahr. Die Zahlen der unterschiedlichen Datenquellen sind nicht vergleichbar, da sie jeweils andere Teilmengen umfassen. So sind in den Zahlen des Digitalen Dossiers im Gegensatz zu den Genehmigungsdaten des LANUV oder des abfallrechtlichen Notifizierungsverfahrens auch Champignonkultursubstrate ("Champost"; in 2013 45 % der Gesamtimporte!) und Gärreste enthalten.

Tabelle A8: Jahresmengen von Wirtschaftsdüngerimporten aus NL

Jahr	Datenherkunft	Menge (t/Jahr)
1996	Notifizierung BezReg.	27.600
1997	Notifizierung BezReg.	36.,700
1998	Notifizierung BezReg.	18.800
1999	Notifizierung BezReg.	18.100
2000	Notifizierung BezReg.	16.000
2001	Notifizierung BezReg.	29.300
2002	Notifizierung BezReg.	60.000
2003	Notifizierung BezReg.	58.000
2004	Notifizierung BezReg.	85.000
2005	Notifizierung BezReg.	61.000
2006	Notifizierung BezReg.	88.700
2007 (bis	Notifizierung BezReg.	44.200

Jahr	Datenherkunft	Menge (t/Jahr)
7/2007)		
2011	Digitales Dossier *	1.162.293
2012	Digitales Dossier *	1.387.293
2013	Digitales Dossier *	1.423.231
2010	Genehmigungen LANUV	745.215
2011 (bis	Genehmigungen LANUV	275.516
8/2011)		
2012	Genehmigungen LANUV (nur	76.744
	unverarb. Gülle/HTK)	
2013	Genehmigungen LANUV (nur	99.272
	unverarb. Gülle/HTK)	

^{*(}Wirtschaftsdünger inklusive Champignonkultursubstrate und Gärreste)

Eine Notifizierungspflicht (abfallrechtliche Importgenehmigungspflicht) bestand seit in Kraft treten der EG-Abfallverbringungsverordnung (VO (EWG) Nr. 259/93) im Mai 1994. Damit bedurfte die grenzüberschreitende Verbringung von Gülle und verarbeiteter Gülle grundsätzlich einer Genehmigung (Notifizierung mit Zustimmung der zuständigen Behörde). Systematisch erfasste Daten liegen seit 1996 vor. Mit in Kraft treten der Verordnung (EG) Nr. 1013/2006 am 13.07.2007 wurde die Notifizierungspflicht für Gülle aufgehoben. Aktuell wird die Frage geprüft, inwieweit nach derzeitiger Rechtslage eine abfallrechtlliche Notifizierungspflicht für bestimmte Gülleherkünfte besteht.

10. Auf welcher Grundlage hat die Landesregierung Erkenntnisse darüber, wie viel Gülle heute insgesamt auf den landwirtschaftlichen Nutzflächen in NRW ausgebracht wird und wie ist die regionale Verteilung?

Die ausgebrachte Güllemenge (neben Gülle werden auch die anderen Wirtschaftsdünger, wie z.B. Mist, dargestellt) wird aufgrund der sehr unterschiedlichen Nährstoffgehalte anhand der wichtigsten Hauptnährstoffe Stickstoff und Phosphat dargestellt.

Die nachstehende Tabelle zeigt die in den Kreisen bzw. Kreisfreien Städten in NRW nach Anrechnung aller Wirtschaftsdüngerimporte und -exporte verbleibenden Stickstoffmengen. In die Berechnung eingeflossen sind die Nährstoffausscheidungen der Tiere, die Importe aus den Niederlanden (Auswertung des Digitalen Dossier), die Importe aus anderen Staaten der Europäischen Union (EU) und anderen Bundesländern (Auswertung der Datenbank nach § 4 der Verordnung über das Inverkehrbringen und Befördern von Wirtschaftsdünger (WDüngV)) sowie die Nährstoffexporte aus den Kreisen in benachbarte Kreise in NRW, in andere Bundesländer und Staaten (Auswertung der Wirtschaftsdüngerdatenbank gemäß § 3 Wirtschaftsdüngernachweisverordnung NRW (WDüngNachwV)). Siehe hierzu auch Tabelle B13 Gesamtstickstoff: Anfall, Import, Export und Verbleib in NRW im Anhang.

Stickstoff (kg N) aus organischen Düngern in den Kreisen im Jahr 2013 Tabelle A9:

		Schweine Rinder						Klärschlamm				
Kreis		Mist Gülle		Mist Gülle ⁸		Geflügel sonstiger Mist		Champost			Summe	
111	Dünnelderf	72				42.052	25.042	40.405	0.500	0		202.420
	Düsseldorf	2.814	34.662 66.814	9.362 17.005	37.167 28.402	43.953 47.383	25.843 27.543	42.485 60.112	8.580 12.941	0	0	202.126 263.014
	Duisburg Essen	•••••		••••••	23.719		•		12.941		0	
	Krefeld	2.332	26.066	16.095	•	11.646	43.322	30.779		5.618		159.577
	•	4.674	86.695	15.943	96.406	26.260	16.464	50.497	16.738	0	0	313.677
	Mönchengladbach	12.240	151.989	18.578	202.555	12.442	18.847	46.242	264.831	34.391	0	762.116
	Mülheim	567	580	14.785	7.241	13.076	4.699	31.782	0	2.554	0	75.284
119	Oberhausen	1.139	7.492	1.253	9.591	765	7.663	17.251	0	0	0	45.154
120	Remscheid	794	2.742	40.411	79.709	-1.072	11.631	0	0	0	0	134.216
	Solingen	21	1.960	21.609	38.505	1.722	23.846	25.451	173	1.733	0	115.020
	Wuppertal	108	6.609	15.282	130.849	23.006	43.333	4.600	0	9.705	0	233.492
	Kleve	564.866	1.843.901	1.248.213	6.260.840	929.841	209.219	1.224.422	1.468.278	15.672	0	13.765.253
158	Mettmann	6.060	23.775	59.899	199.454	121.788	52.517	130.421	9.275	47.793	0	650.983
162	Rhein-Kreis-Neuss	60.611	498.191	24.110	297.364	5.059	99.842	444.524	222.643	56.956	5.681	1.714.979
166	Viersen	154.862	637.732	328.710	1.668.327	-216.073	130.442	399.545	612.451	75	0	3.716.072
170	Wesel	186.863	943.821	1.453.539	3.047.934	332.283	208.907	470.136	445.014	7.069	0	7.095.567
	RegBez. Düsseldorf	998.024	4.333.030	3.284.795	12.128.064	1.352.078	924.119	2.978.247	3.060.925	181.566	5.681	29.246.528
	Bonn	33	205	3.004	10.764	512	14.489	4.338	0	4.555	0	37.901
315	Köln	2.687	45.661	20.097	17.675	49.718	22.925	148.288	48.037	443	0	355.530
316	Leverkusen	84	10.850	23.145	51.546	3.591	10.524	405	3.160	0	0	103.305
334	Aachen	19.515	145.984	150.022	1.692.136	163.324	74.523	236.421	23.151	15.904	0	2.520.982
358	Düren	37.712	441.123	287.510	570.468	313.899	108.089	1.006.147	568.422	157.367	23.139	3.513.875
362	Rhein-Erft-Kreis	33.079	491.976	91.047	123.932	206.649	50.762	104.900	343.626	83.274	0	1.529.246
366	Euskirchen	73.436	76.273	530.106	1.787.694	1.266.603	226.821	339.379	103.082	218.447	11.168	4.633.009
370	Heinsberg	93.299	1.426.679	604.897	1.437.150	246.065	141.660	503.742	562.552	37.723	61.260	5.115.028
374	Oberberg. Kreis	1.422	13.107	277.925	3.005.663	32.532	176.383	292	0	0	0	3.507.324
378	Rheinisch-Berg. Kreis	1.768	11.808	217.761	948.185	43.012	125.191	98.893	2.092	0	0	1.448.711
382	Rhein-Sieg-Kreis	8.550	68.288	262.685	2.111.478	133.457	201.185	269.133	38.552	13.072	406	3.106.807
	RegBez. Köln	271.584	2.731.954	2.468.200	11.756.692	2.459.362	1.152.553	2.711.939	1.692.674	530.787	95.973	25.871.717
512	Bottrop	33.900	156.893	35.895	180.070	4.500	28.971	21.981	3.173	0	0	465.384
513	Gelsenkirchen	677	25.250	27.596	33.757	1.715	17.354	1.458	0	0	0	107.807
515	Münster	44.852	659.011	57.007	485.883	83.506	44.679	124.511	0	3.265	206	1.502.920
554	Borken	26.701	6.322.096	2.457.301	5.913.140	425.980	184.348	1.888.832	2.159	0	0	17.220.558
558	Coesfeld	14.764	6.875.189	770.129	1.828.464	518.647	190.586	966.691	579	6.543	7.365	11.178.957
	Recklinghausen	176.350	1.048.518	108.251	1.328.134	203.443	147.227	70.533	0	3.527	3.147	3.089.128
	Steinfurt	446.871	6.544.321	1.787.889	3.094.522	587.699	245.136	1.317.717	145	6.112	12.153	14.042.566
570	Warendorf	481.633	6.094.323	556.234	2.470.551	736.462	205.185	893.114	0	0	234	11.437.736
0.0	RegBez. Münster	1.225.747	27.725.601	5.800.302	15.334.521	2.561.953	1.063.485	5.284.838	6.056	19.447	23.106	59.045.055
711	Bielefeld	17.929	116.994	36.420	121.661	71.533	47.863	244.778	0	2.197	1.583	660.957
	Gütersloh	153.420	1.926.724	705.926	2.356.230	388.091	152.277	600.672	0	3.477	3.020	6.289.836
	Herford	100.743	663.482	153.118	192.912	162.113	80.608	566.370	864	58.565	5.651	1.984.426
	Höxter	334.742	1.759.242	672.356	993.006	403.211	156.489	1.243.342	0	181.994	20.971	5.765.351
	Lippe	142.140	809.965	341.902	630.438	367.236	158.139	939.771	0	208.894	1.287	3.599.772
	Minden-Lübbecke	255.113	2.442.957	476.441	1.412.367	437.859	155.540	1.415.653	331	7.071	5.601	6.608.934
774	Paderborn	441.624	2.347.312	261.459	1.983.091	328.351	172.955	1.144.496	5.766	41.107	10.170	6.736.331
777	RegBez. Detmold	1.445.710	10.066.676	2.647.622	7.689.705	2.158.394	923.870	6.155.081	6.961	503.305	48.283	31.645.607
011	Bochum	380	9.608	4.479	11.951	18.034	23.450	26.759	0.301	755	0	95.416
	Dortmund	5.102	101.888	9.668	102.384	6.822	56.203	191.897	0	4.554	0	478.517
	Hagen	123	717	21.780	78.753	1.629	19.480	11.629	0	4.554	0	134.111
	Hamm	67.815	414.644	125.827	224.222	88.832	37.271	146.755	0	36.405	83	1.141.855
	Herne	3.895	14.374	3.399	1.745	6.441	10.604	2.034	0	0	0	42.493
	Ennepe-Ruhr-Kreis	3.803	78.295	153.218	504.755	58.023	107.507	66.801	0	3.981	0	976.383
	Hochsauerlandkreis	75.032	462.015	985.347	3.229.432	139.941	162.491	379.728	0	1.663	0	5.435.649
	Märkischer Kreis	55.004	•	···············	1.375.405	150.027	128.370	149.433	0	1.003	0	2.795.058
		•	318.497	618.323						······		
	Olpe	47.571	27.801	199.924	1.016.551	36.606	56.929	51.368	0	0	0	1.436.750
	Siegen-Wittgenstein	2.362	2.392	348.540	679.765	11.781	114.658	-1.917	0	0	0 040	1.157.581
	Soest	433.074	2.524.156	276.808	1.744.122	1.157.662	212.787	1.536.809	0	107.240	22.940	8.015.598
978	Unna	180.541	1.204.929	266.699	377.417	167.869	140.200	166.085	2.071	52.555	0	2.558.367
	RegBez. Arnsberg	874.702	5.159.316	3.014.012	9.346.503	1.843.667	1.069.950	2.727.381	2.071	207.153	23.023	24.267.779
	NRW	4.815.768	50.016.576	17.214.931	56.255.483	10.375.454	5.133.977	19.857.486	4.768.688	1.442.258	196.065	170.076.686

 $^{^{7}}$ einschließlich pflanzlicher Anteil aus Biogasanlagen, siehe Frage 7 8 einschließlich Mischgülle

Nachfolgende Tabelle zeigt die P-Mengen aus organischen Düngern.

Tabelle A10: Phosphat (kg P2O5) aus organischen Düngern in den Kreisen im Jahr 2013

Kreis	2013	Verbleib in NRW
111	Düsseldorf	verbieib in NRW
112	Duisburg	164.544
113	Essen	106.696
114	Krefeld	174.346
116	Mönchengladbach	473.388
117	Mülheim	41.603
119	Oberhausen	21.679
120	Remscheid	69.611
122	Solingen	59.340
124	Wuppertal	133.225
154	Kleve	7.035.176
158	Mettmann	411.565
162	Rhein-Kreis Neuss	1.142.736
166	Viersen	1.861.869
170	Wesel	3.580.793
	RegBez. Düsseldorf	15.409.217
314	Bonn	28.341
315	Köln	222.825
316	Leverkusen	55.500
334	Aachen	1.232.108
358	Düren	2.070.811
362	Rhein-Erft-Kreis	994.899
366	Euskirchen	2.795.996
370	Heinsberg	2.989.713
374	Oberbergischer Kreis	1.425.220
378	Rheinisch-Berg. Kreis	630.436
382	Rhein-Sieg-Kreis	1.378.628
002	RegBez. Köln	13.824.477
512	Bottrop	237.600
513	Gelsenkirchen	57.772
515	Münster	749.381
554	Borken	8.323.938
558	Coesfeld	5.830.854
562	Recklinghausen	5.630.694 1.645.447
566 570	Steinfurt	7.252.685
570	Warendorf	5.994.521
	RegBez. Münster	30.092.197
711	Bielefeld	340.713
754	Gütersloh	3.204.653
758	Herford	1.037.654
762	Höxter	3.052.198
766	Lippe	2.099.278
770	Minden-Lübbecke	3.424.268
774	Paderborn	3.358.246
	RegBez. Detmold	16.517.009
911	Bochum	58.911
913	Dortmund	233.848
914	Hagen	63.250
915	Hamm	644.205
916	Herne	28.033
954	Ennepe-Ruhr-Kreis	526.834
958	Hochsauerlandkreis	2.348.922
962	Märkischer Kreis	1.275.958
966	Olpe	601.362
970	Siegen-Wittgenstein	497.368
974	Soest	4.273.003
974 978	Unna	1.534.121
310	RegBez. Arnsberg	1.534.121
	NRW	
	MKAA	87.928.714

11. Wie hat sich der Anfall von Gülle und Gärresten im Land NRW von 1990 bis 2013 entwickelt? Bitte die jeweiligen Mengen für jedes Jahr ausweisen.

Siehe Antwort zu Frage 7.

12. Wie hat sich der Nährstoffgehalt (P2O5) der Böden gemäß der Kategorie Gehaltsklassen sowie der Stickstoffgehalt der Böden in den Jahren 1990 bis 2013 entwickelt? Angabe bitte nach Landkreisen.

Zum Phosphatgehalt der Böden liegen der Landesregierung keine Daten vor. Die Düngeverordnung verpflichtet die Betriebe, alle 6 Jahre eine Analyse für Phosphat für jeden Schlag > 1 Hektar vorzulegen. Die folgende Tabelle zeigt die Anteile der von der Landwirtschaftlichen Untersuchungs- und Forschungsanstalt Nordrhein-Westfalen (LUFA) analysierten nicht amtlichen Bodenproben in den jeweiligen Gehaltsklassen seit dem Jahr 2005. Hohe Anteile in den Gehaltsklassen D und E finden sich vor allem in der Westfälischen und Rheinischen Bucht sowie im Niederrheinischen Tiefland. Die Verteilung hat sich in den letzten 10 Jahren nicht wesentlich geändert. Aussagen auf Ebene der Landkreise sind nicht möglich. Zu beachten ist, dass die angeführten Prozentwerte sich ausschließlich auf die Anzahl der Proben beziehen. Aussagen über Flächenanteile sind auf dieser Basis nicht möglich.

Tabelle A11: Anteil der Bodenproben in den P-Gehaltsklassen

Jahr	Α	В	С	D	E	Anzahl Proben
	Bergisches Lan	nd/Sauerland				
2005	1,5 %	19,2 %	45,2 %	28,2 %	5,9 %	11.634
2006	1,9 %	24,1 %	44,4 %	24,0 %	5,5 %	13.699
2007	1,6 %	24,3 %	45,6 %	23,4 %	5,1 %	15.075
2008	2,7 %	25,5 %	42,2 %	24,1 %	5,4 %	10.169
2009	3,0 %	26,6 %	43,0 %	22,3 %	5,0 %	11.908
2010	2,0 %	25,4 %	43,9 %	23,1 %	5,5 %	8.525
2011	2,4 %	28,7 %	43,7 %	21,2 %	4,0 %	13.392
2012	3,7 %	30,3 %	42,7 %	19,2 %	4,2 %	12.085
2013	2,7 %	28,1 %	45,1 %	19,7 %	4,4 %	11.523
	Eifel	·	•			
2005	2,9 %	23,4 %	40,1 %	26,7 %	6,9 %	1.777
2006	3,5 %	24,8 %	39,4 %	25,0 %	7,2 %	2.095
2007	1,8 %	22,6 %	39,1 %	25,9 %	10,7 %	1.705
2008	6,4 %	22,9 %	39,0 %	24,4 %	7,2 %	1.476
2009	2,8 %	21,2 %	39,8 %	27,7 %	8,5 %	1.489
2010	2,9 %	29,8 %	37,2 %	22,7 %	7,4 %	1.172
2011	2,1 %	27,1 %	39,7 %	22,1 %	9,0 %	1.970
2012	3,2 %	26,3 %	39,3 %	24,7 %	6,6 %	1.541
2013	5,0 %	26,2 %	35,9 %	25,0 %	7,9 %	1.616
	Niederrheinisch		,	,		
2005	0,6 %	6,7 %	28,2 %	47,6 %	16,9 %	15.097
2006	0,8 %	6,8 %	26,7 %	46,7 %	19,0 %	13.487
2007	0,3 %	6,0 %	26,3 %	48,3 %	19,2 %	13.507
2008	0,4 %	5,2 %	23,8 %	47,6 %	23,0 %	12.902
2009	0,6 %	6,9 %	26,7 %	47,4 %	18,4 %	11.409
2010	0,4 %	5,7 %	26,0 %	46,6 %	21,3 %	10.142
2011	0,8 %	7,1 %	27,1 %	47,3 %	17,7 %	12.685
2012	0,5 %	6,2 %	25,7 %	47,3 %	20,3 %	11.804
2013	0,5 %	6,4 %	26,1 %	46,1 %	20,9 %	12.177
	Ostwestfalen					
2005	1,1 %	15,2 %	42,4 %	33,4 %	7,8 %	9.522
2006	1,4 %	18,6 %	43,1 %	29,6 %	7,3 %	11.803
2007	1,4 %	20,9 %	43,9 %	27,5 %	6,4 %	8.818
2008	1,3 %	19,7 %	43,4 %	29,5 %	6,1 %	9.181
2009	1,7 %	20,0 %	44,7 %	27,4 %	6,1 %	7.766
2010	1,4 %	23,5 %	44,5 %	25,1 %	5,5 %	7.191
2011	2,3 %	23,4 %	44,1 %	24,7 %	5,6 %	10.139
2012	2,2 %	24,2 %	43,1 %	24,9 %	5,5 %	8.930
2013	1,8 %	21,8 %	42,2 %	27,9 %	6,4 %	11.101
	Rheinische Bud					
2005	0,9 %	8,3 %	34,8 %	44,6 %	11,5 %	7.040
2006	0,8 %	8,3 %	35,5 %	43,9 %	11,5 %	6.913
2007	1,1 %	8,8 %	32,3 %	46,1 %	11,7 %	6.657
2008	0,5 %	7,1 %	33,9 %	47,5 %	11,0 %	6.579
2009	1,1 %	8,7 %	36,2 %	44,4 %	9,6 %	6.746
2010	1,7 %	10,7 %	37,5 %	41,3 %	8,8 %	5.488
2011	2,2 %	9,8 %	38,3 %	40,4 %	9,4 %	6.629
2012	1,6 %	10,5 %	40,9 %	38,9 %	8,0 %	5.888
2013	1,7 %	10,8 %	37,2 %	41,5 %	8,8 %	6.236
	Westfälische B					
2005	0,4 %	5,5 %	24,3 %	49,8 %	20,1 %	49.412
2006	0,5 %	6,8 %	27,3 %	48,2 %	17,3 %	51.461

Jahr	Α	В	С	D	Е	Anzahl Proben
2007	0,5 %	6,6 %	27,1 %	49,2 %	16,6 %	41.580
2008	0,5 %	6,0 %	25,8 %	49,0 %	18,7 %	41.081
2009	0,5 %	6,8 %	27,1 %	48,9 %	16,7 %	37.237
2010	0,5 %	6,0 %	26,0 %	50,3 %	17,3 %	32.248
2011	0,5 %	6,7 %	28,3 %	50,0 %	14,5 %	44.347
2012	0,4 %	6,3 %	26,2 %	50,3 %	16,7 %	40.925
2013	0,5 %	6,4 %	25,9 %	50,2 %	17,0 %	35.966

Zu den Stickstoffgehalten der Böden liegen keine Daten vor.

13. Wie können Stickstoffüberschüsse ermittelt werden? Welche Berechnungsverfahren gibt es hierzu und wie zuverlässig sind diese?

Unterschiedliche methodische Ansätze bei der Bilanzierung von Nährstoffströmen im landwirtschaftlichen Betrieb führen zu unterschiedlichen Ergebnissen. Die Abb. 6 und 7 zeigen schematisch die Vorgehensweise bei der Nährstoffbilanzierung in Anlehnung an den VDLUFA-Standpunkt "Nährstoffbilanzierung im landwirtschaftlichen Betrieb" (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, 2007). Die Verfahren unterscheiden sich insbesondere hinsichtlich der Qualität der erfassten Daten.

Abbildung 6: Hoftor-Bilanz (nach VDLUFA 2007, verändert)

Bei der Hoftor-Bilanz (Abb. 6) werden Nährstoffe, die über Futtermittel, Mineraldünger und sonstige zugekaufte Nährstoffträger auf den Betrieb gelangen, dem Nährstoffexport über pflanzliche und tierische Produkte gegenübergestellt. Benötigt werden im Wesentlichen Daten, die über Kauf- bzw. Verkaufsbelege belegt werden können. Lediglich die N-Bindung durch Leguminosen und (bei Hoftor-Vergleichen nach Düngeverordnung (DüV) von 1996) die gasförmigen Stickstoffverluste werden berechnet. Dieses Verfahren liefert aufgrund der Datenqualität die sichersten Aussagen. Die Erfassung des Futterzukaufs und des Verkaufs aller, also auch der tierischen Produkte ist sehr aufwändig. Die Nährstoffgehalte von Futtermitteln und sonstigen Nährstoffträgern sowie der Verkaufsprodukte müssen bekannt sein bzw. ermittelt werden (Faustzahlen oder Analysen).

Abbildung 7: Feld-Stallbilanz (nach VDLUFA 2007, verändert)

Bei der Feld-Stallbilanz (Abb. 7) sind nur der Mineraldüngerzukauf, der Zukauf sonstiger Nährstoffträger und der Verkauf von Marktfrüchten belegt. Berechnet dagegen wird neben der N-Fixierung vor allem auch der Nährstoffanfall über Wirtschaftsdünger, der in Tierhaltungsbetrieben eine wesentliche Nährstoffquelle darstellt. Neben der Kalkulation des Nährstoffanfalls anhand von festgelegten Ausscheidungswerten und der Anzahl der jeweils gehaltenen Tiere ist vor allem der Nährstoffentzug über das im Betrieb erzeugte Futters schwierig, da hier nur Schätzungen vorgenommen werden können.

In Betrieben mit Futterbauflächen (Silomais, sonstiges Feldfutter, Grünland, Gärsubstratanbau) kann die Nährstoffbilanzierung auf Basis einer plausibilisierten Flächenbilanz erfolgen. Dafür wird im Betrieb mit Raufutter fressendem Tierbestand zur Bestimmung der N- und P-Abfuhr über Raufutter ein plausibles Verhältnis zwischen Tierbestand und Nährstoffabfuhr über das Grundfutter berechnet. Der Grundfutterertrag wird auf Basis des Grundfutterbedarfs der vom Betrieb gehaltenen, Raufutter fressenden Tiere geschätzt und muss nicht vom Landwirt angegeben werden.

Beide Verfahren der Bilanzierung beziehen sich auf den Gesamtbetrieb, d. h. die innerbetriebliche Verteilung der Nährstoffe wird nicht berücksichtigt. Dieser Gesichtspunkt spielt lediglich bei der Schlagbilanz (Abb. 8) eine Rolle. Der große Nachteil ist die schlechte Datenqualität: Fast alle benötigten Daten, vor allem auch die innerbetriebliche Verteilung der Nährstoffe, werden entweder geschätzt oder aber den (mehr oder weniger zuverlässigen) Aufzeichnungen des Betriebs entnommen. Die Schlagbilanz hat somit zwar einen direkten Bezug zur konkreten Einzelfläche, die Aussagen basieren aber auf sehr unsicheren, kaum rechtssicher nachweisbaren Daten. Dieses Instrument ist daher hauptsächlich für Beratungszwecke relevant.

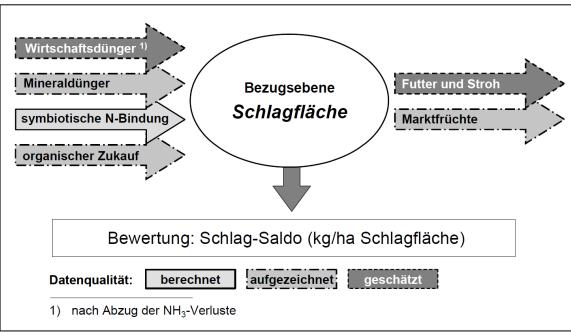


Abbildung 8: Schlagbilanz (nach VDLUFA 2007, verändert)

- 14. Gibt es eine Auswertung der gemäß Wirtschaftsdünger-Verbringungsverordnung anzuzeigenden Meldepflichten für den Transfer von Wirtschaftsdüngern inner- und außerhalb von NRW?
- 15. Wie stellen sich die Abgabemengen gemäß Wirtschaftsdünger-Verbringungsverordnung nach Wirtschaftsdüngerart dar?

Es gibt Meldepflichten:

- nach § 4 der bundesweit geltenden Wirtschaftsdüngerverordnung; hierbei hat der Empfänger von Wirtschaftsdünger aus anderen Ländern (Bundesländer, Ausland) bis zum 31.3. die jeweils im Vorjahr empfangene Menge, Abgeber und Datum/Zeitraum der Abnahme zu melden;
- 2. nach § 3 der landesweit in NRW geltenden Wirtschaftsdünger-Nachweisverordnung; hierbei hat jeder Abgeber von Wirtschaftsdünger in NRW der zuständigen Behörde bis zum 31.3. für das jeweils vorangegangene Jahr die Abgabemengen mit Nährstoffgehalten (Stickstoff und Phosphor) und die Empfänger sowie Beförderer mit einer eindeutigen Betriebsnummer auf elektronischem Wege zu melden.

Beide Meldungen werden seit 2013 durch die zuständige Behörde in einer Datenbank elektronisch erfasst und sind mit dem Nährstoffbericht 2014 erstmals ausgewertet worden. Knapp 40.000 Abgabemeldungen für 2013 wurden erfasst. Die nachfolgende Tabelle zeigt die nach Wirtschaftsdüngerart differenzierten Abgabemengen für Stickstoff und Phosphat:

Tabelle A12: In der Datenbank zur Wirtschaftsdünger-Nachweisverordnung erfassten Abgabemeldungen nach Art der Wirtschaftsdünger für 2013

Wirtschaftsdünger	Gesamt-N		N aus Wirtscha tierischer I		Phosphat		
3 .	kg	%	kg	%	kg	%	
Gärreste	26.008.077	42,6 %	12.763.789	26,7 %	10.823.686	35,2 %	
Schweinegülle	15.437.319	25,3 %	15.437.319	32,3 %	8.704.043	28,3 %	
Rinder-/Mischgülle	9.129.449	15,0 %	9.129.449	19,1 %	4.179.130	13,6 %	
Geflügelkot/-mist	7.003.539	11,5 %	7.003.539	14,6 %	5.099.184	16,6 %	
Rindermist	2.050.800	3,4 %	2.050.800	4,3 %	1.108.904	3,6 %	
sonst. Mist	707.282	1,2 %	707.282	1,5 %	457.435	1,5 %	
Champost	566.610	0,9 %	566.610	1,2 %	279.746	0,9 %	
Schweinemist	152.690	0,3 %	152.690	0,3 %	139.633	0,5 %	
Summe	61.055.768	100 %	47.811.479	100 %	30.791.761	100 %	

Hinsichtlich weiterer Auswertungen und einer Differenzierung der Abgaben auf Kreisebene wird auf den Nährstoffbericht 2014 verwiesen.

16. Welche Informationen stehen der Landesregierung durch die eingerichtete "Gülle-Börse" zur Verfügung und hat sich dieses Instrument bewährt?

Die "Nährstoffbörse NRW" wird seit 2003 vom Kuratorium für Betriebshilfsdienste und Maschinenringe Westfalen-Lippe e.V. betrieben. Auf Basis einer zentralen Nährstoffdatenbank werden Wirtschaftsdünger zwischen abgebenden und aufnehmenden Betrieben vermittelt. Alle als Aufnehmer gemeldeten Betriebe werden mit Hilfe des Nährstoffbeurteilungsblatts der Landwirtschaftskammer NRW (LWK) hinsichtlich ihrer Aufnahmekapazität geprüft; das System verhindert eine über diese Aufnahmekapazität hinausgehende Vermittlung. Alle Nährstofflieferungen sind in der zentralen Nährstoffdatenbank dokumentiert.

Die Funktionalität der Datenbank und die Tätigkeit der mit dem System arbeitenden Vermittler werden stichprobenartig durch den DLWK behördlich überprüft. Auf dieser Grundlage werden im Rahmen dieses Verfahrens ausgestellte Vermittlungsgarantien als ordnungsgemäße überbetriebliche Verwertung in Genehmigungsverfahren anerkannt.

In den Jahren 2010 bis 2012 wurden 7 Vermittler geprüft. Zwei Prüfungen ergaben keine Mängel. Bei 3 Vermittlern wurden leichte Mängel bei der Dokumentation festgestellt, die abgestellt werden konnten. Ein weiterer hat die Dokumentation nach zwei Nachprüfungen zufriedenstellend verbessert. Ein Vermittler hat die Log-In-Berechtigung nach der zweiten Nachprüfung zurückgegeben. Die betroffenen Kunden werden mittlerweile durch ein anderes Unternehmen betreut. Die Nachprüfung eines weiteren Unternehmens steht noch aus.

Aktuell sind nach Auskunft des Kuratoriums 10.660 Betriebe (3.500 Abgeber, 7.160 Aufnehmer) in dem System registriert, in 2013 wurden etwa 2,7 Millionen (Mill.) Tonnen Wirtschaftsdünger vermittelt und dokumentiert.

Das Instrument hat sich aus Sicht der Landesregierung als freiwilliges Vermittlungssystem des Berufstandes bewährt. Als freiwilliges, privatwirtschaftlich getragenes System kann es jedoch nicht die Anforderungen einer umfassenden behördlichen Kontrolle der Wirtschafts-

düngerabgaben und -aufnahmen erfüllen. Als Überwachungs- und Kontrollsystem sind in NRW seit 2010 die bundesweit geltende Wirtschaftsdüngerverordnung und seit 2012 die nordrhein-westfälische Wirtschaftsdünger-Nachweisverordnung eingeführt worden, die jeden Abgeber von Wirtschaftsdünger zur Meldung sämtlicher Abgabemengen und der Aufnehmer rechtsverbindlich verpflichten. Diese Angaben werden in der vom DLWK als zuständige Fachbehörde betriebenen Wirtschaftsdünger-Datenbank erfasst.

17. Wie viele Anträge wurden 2013 insgesamt und mit jeweils welcher Größenordnung für die Ausbringung von Trockenkot und Gülle aus dem Ausland zur Ausbringung in NRW genehmigt?

Im Jahr 2013 wurden durch das LANUV 82 Anträge in einer Größenordnung von jeweils 100 bis 2.500 t genehmigt. Insgesamt wurde eine Gesamtmenge Gülle (Hähnchenmist, HTK oder Pferdemist) in Höhe von 99.272 t genehmigt, davon waren 8.027 t für die direkte Ausbringung auf landwirtschaftliche Flächen, der verbleibende Teil zur Vergärung in Biogasanlagen vorgesehen.

18. Welche Vorgaben für die Lagerkapazität von Gülle und Gärresten besteht und wie werden diese kontrolliert?

Die Vorgaben für die Lagerkapazität von Gülle ergeben sich aus Anhang III Nr. 1.2 der Richtlinie 91/676/EWG (Nitratrichtlinie). Die dort beschriebenen Anforderungen sind in Nordrhein-Westfalen mit der "Verordnung zur Umsetzung von Artikel 4 und 5 der Richtlinie 91/676/EWG des Rates vom 12. Dezember 1991 zum Schutz der Gewässer vor Verunreinigungen durch Nitrat aus landwirtschaftlichen Quellen – Amtsblatt der Europäischen Union (ABI.). EG Nr. L 375 Seite 1 - Jauche-Gülle-Silagesickersaft-Anlagen-Verordnung (JGS-AnlagenV) umgesetzt.

Danach muss die Lagerkapazität zur Lagerung von flüssigen Wirtschaftsdüngern auf die Belange des Gewässerschutzes und die klimatischen und pflanzenbaulichen Besonderheiten des jeweiligen landwirtschaftlichen Betriebes abgestimmt sein. Eine Lagerkapazität von mindestens 6 Monaten ist vorzuhalten. Eine Unterschreitung dieser Mindestlagerkapazität ist nur zulässig, wenn eine ordnungsgemäße überbetriebliche Lagerung und Verwertung oder eine ordnungsgemäße Beseitigung der flüssigen Wirtschaftsdünger tierischer Herkunft gegenüber der zuständigen Behörde nachgewiesen wird.

Zur Umsetzung und Konkretisierung der Anforderungen der Nitratrichtlinie und der JGS-AnlagenV im Baugenehmigungsverfahren für Tierhaltungsanlagen wird in Nordrhein-Westfalen bereits seit 1989 die notwendige Lagerkapazität in Abhängigkeit von Dauergrünland und Hackfruchtanteil an der gesamten Fläche des Betriebes geprüft (Runderlass. des Ministers für Umwelt, Raumordnung und Landwirtschaft v. 21.3.1989-III B 7-1573-29993, abgelöst durch Runderlass des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz II – 5 – 2220.20.03 / IV – 8 – 1573 – 29993 v. 12.11.2003). Danach muss eine Lagerkapazität zwischen 6 Monaten (Dauergrünlandanteil > 66 %) und 10 Monaten (Anteil Mais, Rüben, Kartoffeln, Gemüse > 75 %) nachgewiesen werden.

Anforderungen an die Lagerkapazität gelten bisher ausschließlich für flüssige Wirtschaftsdünger tierischer Herkunft, Vorgaben für Gärreste pflanzlicher Herkunft fehlen bisher. Die Landesregierung setzt sich im Rahmen der Novellierung der DüV für Anforderungen an die Lagerkapazität aller flüssigen Wirtschaftsdünger und Gärreste ein.

Im Rahmen des wasserrechtlichen Vollzugs findet in der Regel nur eine anlassbezogene Kontrolle der Einhaltung der bestehenden Anforderungen statt. Einzelne untere Wasserbehörden (UWB) führen im Rahmen medienübergreifender Umweltinspektionen auch systematische Kontrollen durch.

Eine weitere detaillierte, systematische Kontrolle der Lagerkapazität erfolgt im Rahmen von Cross Compliance ((CC) pro Jahr 1 % der Betriebe, die Betriebsprämien erhalten oder an flächengebundenen Agrarumweltmaßnahmen (AUM) teilnehmen). Bei der CC-Kontrolle wird anhand des durchschnittlich gehalten Tierbestandes der Gülleanfall über 6 Monate ermittelt und dann die Größe der Lagerbehälter errechnet. Dafür werden oberirdische Behälter vermessen, bei unterirdischen Güllekellern die Baupläne herangezogen und zumindest die Tiefe nachgemessen. Für die Berechnungen haben die Kontrolleure ein spezielles Berechnungsprogramm auf ihren Laptops, das auch weitere Kenngrößen wie eintretendes Niederschlagswasser bei offenen Behältern, eingeleitetes Spülwasser aus der Melkanlage oder auch ein Mindestfreibord (notwendiger Sicherheitsabstand zwischen maximal Füllhöhe und Rand des Lagerbehälters) berücksichtigt. Mittels dieser Methoden lässt sich die tatsächlich vorhandene Lagerkapazität exakt und sicher bestimmen.

19. Sind der Landesregierung folgende Probleme aufgrund des Einsatzes von mineralischen P-Düngemitteln bekannt?

- Schwermetallbelastungen (Cadmium und Uran) in Böden
- Einträge in Oberflächengewässer

Es ist bekannt, dass durch den Einsatz von mineralischen P-Düngemitteln neben den erwünschten Nährstoffen auch Schwermetalle wie Cadmium und Uran in Böden eingetragen werden und zu Anreicherungen in Böden führen können. Langfristig können daraus schädliche Wirkungen dieser Schwermetalle durch erhöhte Aufnahme in Nutzpflanzen bzw. Austräge in das Grundwasser resultieren.

Die Cadmiumgehalte in Rohphosphaten sind sehr stark von deren Herkunft abhängig und liegen nach Angaben des Julius-Kühn-Instituts (JKI) im Bereich von 0,1-92 mg Cadmium/kg Rohphosphat. Wird eine durchschnittliche mineralische Düngung von 50 kg P_2O_5 je ha und Jahr unterstellt, werden danach 1,3-3,3 g Cadmium je ha und Jahr in landwirtschaftlich und gartenbaulich genutzte Böden eingetragen. Zur Begrenzung des Cadmium-Eintrags in Böden wurde mit der Düngemittelverordnung (DüMV) für Mineraldünger ein Grenzwert von 50 mg Cadmium je kg P_2O_5 festgelegt. Eine Kennzeichnung des Düngers ist ab einem Gehalt von 20 mg Cadmium je kg P_2O_5 erforderlich. Die Anforderungen des nationalen Düngerechts können jedoch zurzeit, wie auch alle anderen ausschließlich national geregelten Vorgaben für Düngemittel, durch die EU-Vorgaben zum freien Warenverkehr umgangen werden. Es bedarf daher dringend einer EU weit geltenden DüMV mit einer einheitlichen Begrenzung der zulässigen Schwermetallgehalte, vor allem in mineralischen Phosphatdüngemitteln.

Nach Abschätzung des JKI werden durch Düngung mit mineralischen Phosphordüngern durchschnittlich 3,7 μ g Uran pro kg Boden und Jahr in landwirtschaftlich und gartenbaulich genutzte Böden eingetragen. In Deutschland enthalten landwirtschaftlich und gartenbaulich genutzte Böden nach Angaben des JKI durchschnittlich 0,59 mg Uran pro kg Boden. Für den Urangehalt in Düngemitteln gibt es bislang weder eine Deklarationspflicht noch einen Grenzwert. Zur Begrenzung des Eintrags von Uran über Phosphatdünger fordert das UBA eine Kennzeichnung für Düngemittel, die Gehalte von mehr als 20 mg Uran je kg P_2O_5 aufweisen und einen Grenzwert von 50 mg Uran je kg P_2O_5 .

Bei regelmäßiger Düngung mit phosphathaltigen Mineraldüngern auf landwirtschaftlichen Flächen kann es zu Anreicherungen von Cadmium und Uran in den Böden kommen. Dabei ist jedoch zu berücksichtigen, dass der Einsatz von phosphathaltigen Mineraldüngern deutlich zurückgegangen ist und mit etwa 15 kg P_2O_5 /ha (Absatz P-Düngemittel in NRW, siehe Antwort auf Frage 7) nur noch etwa 20% der 1990 eingesetzten Menge beträgt. Auch in den Ackerbauregionen wird die P-Düngung zunehmend durch Einsatz von Wirtschaftsdüngern und Gärresten abgedeckt.

Über Oberflächenabfluss oder Erosion von landwirtschaftlich genutzten Flächen sowie durch das Grundwasser kann ein Eintrag der Schwermetalle in Oberflächengewässer erfolgen. Dies kann zur Folge haben, dass der gute ökologische Zustand bzw. das gute ökologische Potential als die zentralen Ziele der EG-Wasserrahmenrichtlinie (WRRL), nicht erreicht werden. Durch Erosion können die nicht von den Pflanzen aufgenommenen Düngerbestandteile in die Oberflächengewässer gelangen. Dies kann u.a. zu einem Überangebot von Phosphor im Gewässer (Eutrophierung) führen. Eutrophierungsbedingte Defizite sind – neben strukturellen Belastungen– gemäß den Monitoring-Ergebnissen nach WRRL eine weitere Ursache für die Nichterreichung des guten ökologischen Zustandes/Potentials in nordrheinwestfälischen Fließgewässern, insbesondere in den langsam fließenden Gewässern des Tieflandes.

20. Technik der Gülleaufbereitung

- Welche Techniken der Gülleaufbereitung gibt es?
- Welche Begründungen gibt es für den Einsatz von Gülleaufbereitungstechnologien?
- Sind entsprechende Techniken bereits erprobt bzw. wo befinden sie sich im Einsatz?
- Welche Kosten und Nutzenaspekte hat diese Technik?
- Wer ist Betreiber entsprechender Gülleaufbereitungsanlagen (Einzelbetrieb, Kooperationen, Lohnunternehmer)?

Techniken der Gülleaufbereitung

Für die Aufbereitung flüssiger Substrate wie Gülle kommen grundsätzlich mechanische Verfahren (Separierung, Siebung, Filtration, Membrantrennung), biologische Verfahren (Belüftung, Vergärung), physikalisch-chemische Verfahren (Ammoniakstrippung), chemische Verfahren (Flockung/Fällung, Säurezugabe) oder thermische Verfahren (Trocknung, Verdampfung) auch in Kombination in Frage. Diese Verfahren haben bisher nur sehr begrenzt Eingang in die landwirtschaftliche Praxis gefunden. Die in der landwirtschaftlichen Praxis eingesetzten Verfahren beschränken sich im Wesentlichen auf eine Separierung der festen von der flüssigen Phase.

Begründung für den Einsatz und Verbreitung von Gülleaufbereitungstechnologien in der Praxis

Aufbereitungsverfahren kommen i.d.R. dort zum Einsatz, wo die betrieblichen Flächen für eine ordnungsgemäße Aufbringung der anfallenden Wirtschaftsdünger zum Zwecke der Düngung nicht ausreichend sind und Nährstoffe abgegeben werden müssen. Kann diese Abgabe nicht im nahen Umfeld des Betriebs erfolgen, muss aus betriebswirtschaftlichen Gründen die Transportwürdigkeit der Gülle oder Gärreste erhöht werden (durch Verringerung des Wassergehaltes).

Daneben können die Verfahren einer Nutzung der in der Gülle vorhandenen Energie in Biogasanlagen dienen oder zu einer Reduktion des erforderlichen Lagervolumens führen.

Die nachfolgend genannten Verfahren sind weitgehend technisch erprobt und befinden sich aktuell in landwirtschaftlichen Betrieben oder Biogasanlagen in Nordrhein-Westfalen im praktischen Einsatz:

- Sinkschichtverfahren,
- Pressschneckenseparator,
- Pressschneckenseparator mit anschließender Bandtrocknung auf Basis von Abwärme aus Biogasanlagen.

Der Einsatz von Dekantern und Zentrifugen befindet sich derzeit in einzelnen Betrieben im Pilotstadium.

Alle genannten Verfahren zur Separierung und auch zur Trocknung der Feststoffe sind hinsichtlich der Abtrennung von Stickstoff bislang nur begrenzt wirksam und ermöglichen insbesondere eine überbetriebliche Verwertung von Phosphat.

Kosten und Nutzenaspekte

Die Nutzenaspekte ergeben sich aus den unterschiedlichen einzelbetrieblichen Rahmenbedingungen. Durch die Abtrennung und Abgabe von Feststoffen wird die notwendige Lagerkapazität für Flüssigmist um bis zu 10% verringert.

Die Separierung von Gülle führt zu einer Verbesserung der Eigenschaften des flüssigen Anteils. Durch das Abtrennen der Feststoffe liegt eine homogene "Dünngülle" vor. Dadurch wird das spätere Aufrühren und Homogenisieren vereinfacht. Nach der Ausbringung fließt die Dünngülle von Blattoberflächen ab und dringt schneller in den Boden ein. In der Regel wird damit die Ammoniak-Verlustrate wesentlich verringert und der Düngewert erhöht.

Durch Abgabe des aufbereiteten Wirtschaftsdüngers entfällt die Notwendigkeit einer entsprechenden Flächenzupacht. Für die abgetrennten Fraktionen mit den angereicherten Nährstoffen wird bislang in der Regel kein kostendeckender Erlös erzielt.

Die Kosten zwischen den unterschiedlichen Techniken/ Systemen schwanken sehr stark. Sie sind von dem ausgewählten Verfahren und der Auslastung bzw. dem Durchsatz abhängig.

Sind beim Sinkschichtverfahren die baulich/ organisatorischen Voraussetzungen mit einem zweiten Lagerbehälter gegeben, entstehen nur noch Kosten für das zusätzliche Abpumpen, Aufrühren und die Nährstoffanalysen (10 – 20 Cent / m³).

Pressschneckenseparatoren können unter günstigen Bedingungen für etwa 2 € je m³ Rohgülle eingesetzt werden. Unter ungünstigen Bedingungen sind aber auch Kosten von über 6 €/m³ möglich.

Schon vom Arbeitsprinzip her sind Dekanter/ Zentrifugen sehr aufwendige Maschinen mit hohen Investitionen und auch hohen Betriebskosten. Im landwirtschaftlichen Bereich ist daher unter hiesigen Verhältnissen bislang kein dauerhafter Einsatz bekannt, aus dem Kosten abgeleitet werden könnten.

Die Kosten der Anwendung weitergehender kombinierter Verfahren (z.B. Separation + Ultrafiltration + Umkehrosmose) sind stark von der individuellen Fallgestaltung abhängig und bislang lediglich aus Versuchen bekannt. Sie dürften in einem Bereich von 10 bis 20 € je m³ Rohgülle liegen.

Betreiber von Gülleaufbereitungsanlagen

Es gibt sowohl Einzelbetriebe und Kooperationen, die Gülleaufbereitungsanlagen betreiben, als auch Lohnunternehmen, die dies als Dienstleistung anbieten und in der Regel eine Reihe landwirtschaftlicher Betriebe in einer Region als Kunden betreuen. Einzelne Lohnunternehmer bieten dazu auch eine Behandlung mittels Dekanter/ Zentrifuge an.

Die Hersteller von Gülleaufbereitungsanlagen verfügen über Anlagenkonzepte, die beiden Kundenkreisen genügen: eher kleine, stationäre Anlagen für Einzelbetriebe, und für Lohnunternehmen entweder mobile, größere Anlagen oder mehrere kleine auf einem Transportfahrzeug zusammengefasste Anlagen.

- 2. Bodenbelastung durch Landwirtschaft; Bodenerosion auf Landwirtschaftlichen Flächen
- 21. Liegen der Landesregierung Erkenntnisse vor, dass es durch die Anwendung von Pflanzenschutzmitteln in der Landwirtschaft zu nachteiligen oder schädlichen Bodenveränderungen kommt oder gekommen ist und wo treten ggfs. solche Fälle auf (bitte Örtlichkeiten benennen)?

Der Landesregierung liegen aktuell keine Kenntnisse über schädliche Bodenveränderungen durch Pflanzenschutzmittel (PSM) in Nordrhein-Westfalen vor.

In früherer Zeit eingesetzte – aber heute nicht mehr zugelassene - persistente chlorierte PSM, wie DDT oder Lindan, haben sich teilweise in Böden angereichert. Insbesondere in Wald- und Gartenböden treten erhöhte Gehalte auf. Daten aus vorliegenden Bodenuntersuchungen sind im Internet über das "Fachinformationssystem Stoffliche Bodenbelastung" des LANUV (FIS StoBo) zugänglich. Wegen der relativ festen Bindung an die organische Substanz im Boden sind keine schädlichen Wirkungen auf Pflanzen oder Grundwasser bekannt.

Im Rahmen des Zulassungsverfahrens für PSM wird u.a. deren Umweltverhalten intensiv geprüft. Antragssteller müssen umfangreiche Unterlagen zum Abbau und Metabolismus, zu Adsorption und Desorption sowie zur Mobilität von PSM-Wirkstoffen im Boden vorlegen. Weist der Wirkstoff die Kennzeichen eines persistenten organischen Schadstoffes (POP) oder eines persistenten, bioakkumulierbaren und toxischen Stoffes (PBT) oder eines sehr persistenten und sehr bioakkumulierbaren Stoffes (vPvB) auf, erfolgt keine Zulassung (sog. "Cut-off-Kriterien"). Ebenso erfolgt grundsätzlich keine Zulassung, wenn der Wirkstoff in Feldversuchen im Boden eine Halbwertzeit von mehr als 3 Monaten zeigt, schädlich für Regenwürmer ist oder die Stickstoff- oder Kohlenstoffmineralisierung des Bodens (als Maß für mikrobielle Aktivität) längerfristig beeinträchtigt. Im Zulassungsverfahren werden für die Beurteilung des Abbau- und Wirkungsverhaltens von PSM unterschiedliche Bodentypen untersucht, die repräsentativ für potentielle Anwendungsflächen sind.

22. Wie beurteilt die Landesregierung die Anwendung von Totalherbiziden (z.B. Glyphosat) in Zusammenhang mit Mulchsaaten zum Erosionsschutz?

Mulch- und Direktsaatverfahren können bei Ackernutzung in hängigem Gelände einen erheblichen Beitrag zum Erosionsschutz leisten. Aus diesem Grund müssen bei diesen Saatverfahren die positiven Aspekte des Erosionsschutzes gegen einen Herbizideinsatz abgewogen werden. Dabei stellt sich allerdings im Einzelfall zunächst die Frage, ob die jeweilige Fläche

nicht per se durch ihre Hangneigung grundsätzlich ungeeignet zur ackerbaulichen Nutzung ist.

Charakteristisch für Mulchsaatverfahren ist, dass der Boden nicht wie beim Pflügen gewendet und Pflanzenreste und Unkräuter in den Boden eingearbeitet werden. Dadurch verbleiben Pflanzenreste an der Bodenoberfläche und als positiver Effekt wird eine ganzjährige Bodenbedeckung erreicht. Im Vordergrund steht bei dieser Art der Bewirtschaftung die Entstehung eines intakten Bodengefüges zum vorbeugenden Schutz vor Erosion und Verschlämmung. Durch die längere Bodenruhe wird zudem ein stabiles Bodengefüge zum vorbeugenden Schutz gegen Verdichtungen durch nachfolgendes Befahren geschaffen.

Allerdings stellt die durch die Bodenruhe aufgelaufene und häufig im Wachstum fortgeschrittene Verunkrautung für die nachfolgenden Kulturpflanzen eine Konkurrenz dar. Unkräuter aus den gleichen Familien wie die Kulturpflanzen (Gramineen, Cruciferen, Solanaceen, Chenopodiaceen) begünstigen zudem die Übertragung von Krankheiten und Schädlingen auf die Kulturpflanzen. Bei der nachfolgenden Saat der Kulturpflanzen führt vorhandene grüne Pflanzenmasse (Unkräuter, Ausfallgetreide etc.) zu technischen Problemen, weil die Sägeräte verstopfen. Pflanzenreste der Vorfrucht sowie Unkräuter können in Mulch- und Direktsaatverfahren bislang nicht ausreichend mechanisch beseitigt werden. Zur Saatvorbereitung wird daher in Mulch- und Direktsaatverfahren in der Regel ein Glyphosatpräparat eingesetzt, da andere Herbizide nicht die erforderliche Wirkungsbreite haben.

Aus Sicht der Landesregierung wäre es wünschenswert, zur Entwicklung von Anbauverfahren zu kommen, die keinen Totalherbizid-Einsatz erforderlich machen, allerdings befindet sich aktuell kein solches Verfahren in der Praxisreife. Im Rahmen des Forschungsschwerpunktes umweltverträgliche und standortgerechte Landwirtschaft fördert das Umweltministerium die Entwicklung neuartiger, nicht-chemischer Unkrautbekämpfungsverfahren. Es bleibt abzuwarten, ob sich hieraus praxisreife Verfahren ableiten lassen, die einen Verzicht auf den Einsatz von Totalherbiziden bei Mulchsaaten ermöglichen.

Generell sei darauf hingewiesen, dass die Landesregierung konsequent alle Möglichkeiten nutzt, sowohl auf politischer Ebene als auch im Rahmen ihrer Zuständigkeiten nach dem Pflanzenschutzgesetz, mögliche Risiken und Belastungen durch glyphosathaltige PSM so weit als möglich zu verringern und zu einer sachgerechten und bestimmungsgemäßen Anwendung beizutragen (siehe auch Antwort zu Frage 23).

23. Wie beurteilt die Landesregierung die Anwendung von Totalherbiziden (z.B. Glyphosat) zur Stoppelbehandlung nach der Getreide- oder Rapsernte im Vergleich zu mechanischer Bodenbearbeitung (bitte Auswirkungen auf Boden und weitere Umweltmedien bewerten)?

Im Allgemeinen ist eine mechanische Stoppelbearbeitung nach der Ernte der Vorfrucht sinnvoll und zur Beseitigung von Ausfallgetreide bzw. –raps und Unkräutern völlig ausreichend. So werden nach der Ernte von Getreide im ersten, flachen Arbeitsgang Unkrautsamen und Ausfallsamen der Vorfrucht zur Keimung angeregt und aufgelaufene Unkräuter beseitigt. Durch die mechanische Bearbeitung wird die Wasserkapillarität unterbrochen und damit Bodenwasser gespart. Im zweiten, tieferen Arbeitsgang werden anschließend die Erntereste mit Erde vermischt und können verrotten. Nach Winterraps sollten die Rapsstoppeln und Erntereste im ersten Arbeitsgang nur geschlegelt werden, damit der Ausfallraps zügig keimt. Der Boden darf allenfalls leicht angekratzt werden. Erst nach der Keimung des Ausfallrapses ist dann eine mechanische Bodenbearbeitung sinnvoll und zumeist auch ausreichend. In diesen Fällen bedarf es keiner Anwendung eines Totalherbizids.

Einen Sonderfall stellen spezielle Verunkrautungs- bzw. Verungrasungsprobleme dar. Gegen Wurzelunkräuter, wie z.B. Ackerschachtelhalm, Ackerwinde, Disteln, Quecke und Landwasser-knöterich, ist die ausschließliche mechanische Stoppelbearbeitung in der Regel nicht ausreichend. Diese Unkrautarten vermehren sich über die gesamte Fruchtfolge, weil sie von mechanischer Bodenbearbeitung oder den kulturspezifischen Herbiziden nicht ausreichend erfasst werden. Gleiches gilt für die Verungrasung mit Ackerfuchsschwanz, die in Getreide nur schwer regulierbar ist. In der Folge entsteht eine Problemverunkrautung, die einerseits zu Konkurrenz mit der angebauten Kulturpflanze und andererseits zu einem erhöhten und zusätzlichen Herbizideinsatz führt. In diesen besonderen Fällen kann der Einsatz eines Totalherbizides sinnvoll sein, zumal häufig Teilflächenbehandlungen ausreichend sind (z.B. Randbehandlungen gegen Quecke).

Bei der zunehmenden Problematik der Verungrasung mit Ackerfuchsschwanz ist allerdings kritisch zu hinterfragen, ob der Einsatz eines Totalherbizids eine langfristig geeignete und sachgerechte Maßnahme darstellt. Wie Erfahrungen aus Betrieben des ökologischen Landbaus belegen, bestehen hier über Maßnahmen der Fruchtfolgegestaltung ausreichend nichtchemische Alternativen.

Die o.g. Sonderfälle rechtfertigen zudem keine großflächigen "Standardanwendungen" eines Totalherbizides nach der Getreide- oder Rapsernte, wie sie regional in einzelnen Betrieben zu beobachten sind. Hier liegt vielmehr der Verdacht nahe, dass es sich nicht um phytosanitäre Maßnahmen zur Regulierung von Problemunkräutern, sondern vorrangig um arbeitswirtschaftliche Maßnahmen (Einsparung von Arbeitsgängen oder höhere Flächenleistung gegenüber mechanischer Bearbeitung) handelt. Ungeachtet der Frage nach möglichen Auswirkungen auf Umweltmedien sind derartige Maßnahmen nach Auffassung der Landesregierung mit der gesetzlichen Forderung nach guter fachlicher Praxis und der Einhaltung der allgemeinen Grundsätze des Integrierten Pflanzenschutzes (§ 3 Pflanzenschutzgesetz) nicht vereinbar. Sie können darüber hinaus – insbesondere in Regionen mit geringen Anteilen von Strukturelementen in der Landschaft – negative Auswirkungen auf die Biodiversität haben.

24. Wie beurteilt die Landesregierung die qualitative Beeinträchtigung von Ackerflächen durch Bodenverdichtungen?

Die Vermeidung von Boden(schad)verdichtungen ist neben der Erosion ein wichtiger Themenbereich der Beratung zur "Guten fachlichen Praxis" nach § 17 Abs. 2 Nr. 3 und wird über die LWK vermittelt. Grundsätzlich sind in der Landwirtschaft bei Bodenbearbeitung und Ernte begrenzte Bodenverdichtungen unvermeidbar. Entscheidend ist jedoch die Vermeidung von irreversiblen Unterbodenverdichtungen.

25. Was sind die Ursachen von Bodenverdichtungen (z.B. durch eine nicht standortangepasste Nutzung)?

Entscheidende Ursachen sind der Bodendruck und der Bodenfeuchtezustand bei der Befahrung, die von Art und Zeitpunkt der Bewirtschaftung abhängig sind. Bodenartspezifische Unterschiede sind relativ gering, daher sind grundsätzlich die meisten Böden als verdichtungsgefährdet anzusehen.

26. Werden Bodenverdichtungen erfasst?

Die Fachhochschule Südwestfalen hat in den Jahren 2002 bis 2005 ein Untersuchungsvorhaben zur "Mechanischen Belastbarkeit von Böden in Nordrhein-Westfalen" auf ausgewählten Flächen in den verschiedenen Naturräumen des Landes durchgeführt. Dabei zeigten sich auf einzelnen Flächen Verdichtungserscheinungen an der Krumenbasis von Ackerflächen. Schadverdichtungen, die Sanierungsmaßnahmen erforderten, wurden nicht festgestellt.

27. Wenn ja, wie ist die Bodenverdichtungsentwicklung?

Neuere Untersuchungen deuten darauf hin, dass Oberboden- und Pflugsohlenverdichtungen, wahrscheinlich wegen der Verwendung breiterer Reifen und des verringerten Pflugeinsatzes, abnehmen. Bei zunehmenden Lasten landwirtschaftlicher Ernte- und Transportmaschinen besteht jedoch wegen der tieferen Druckfortpflanzung ein erhöhtes Risiko von Unterbodenverdichtungen.

28. Welche Maßnahmen schlägt die Landesregierung vor, um zukünftige Bodenverdichtungen zu vermeiden?

Grundsätzlich ist zur Vermeidung tief reichender Unterbodenverdichtungen eine Begrenzung der maximalen Achslast, ggf. differenziert für Maschinen zur Bodenbearbeitung (bei feuchteren Unterböden im Frühjahr) und zur Ernte (bei i.d.R. trockeneren Böden in Spätsommer und Herbst) anzustreben. Ergänzend sollten Möglichkeiten zur stärkeren Anwendung des Einsatzes bodenschützender Agrartechnik (z.B. Breitreifen oder Reifendruckregelanlagen) geprüft werden. Dazu sind Selbstverpflichtungen der Industrie oder von Lohnunternehmerverbänden denkbar. Weiterhin wird angestrebt, der landwirtschaftlichen Praxis über die Beratung Bodenfeuchte-Prognosen auf der Grundlage eines Netzes von Messstellen (MST) des Geologischen Dienstes zur Verfügung zu stellen.

29. Welche Instrumente werden in NRW zur Ermittlung der potenziellen Erosionsgefährdung landwirtschaftlich genutzter Böden angewandt?

Bewertungsgrundlagen zur Ermittlung der potenziellen Erosionsgefährdung sind die DIN-Normen (Deutsches Institut für Normung e.V.) 19706 (Wind) und 19708 (Wasser). Während die Winderosion überwiegend nur auf begrenzten Flächen im nördlichen Münsterland relevant ist, besteht eine Erosionsgefährdung durch Wasser bei Ackerflächen vor allem auf Lößböden in hängigem Gelände. Für die Wassererosion sind die Hangneigung (S-Faktor), die Bodenart (K-Faktor) und das Auftreten von Starkregenereignissen (R-Faktor) die bestimmenden Faktoren für die potenzielle Gefährdung. Für die tatsächliche Gefährdung kommen der Bewirtschaftungseinfluss (C-Faktor), und die Hanglänge (L-Faktor) sowie die Berücksichtigung bereits ergriffener Erosionsschutzmaßnahmen (P-Faktor) hinzu.

Der Geologische Dienst NRW bietet über sein Internetportal zwei unterschiedliche Auswertungen an:

 Erosionsgefährdung landwirtschaftlicher Flächen nach DIN 19708:2005-02; diese Gebietskulisse dient als Grundlage für die Beratung zur guten fachlichen Praxis nach § 17 BBodSchG. Erosionsgefährdung landwirtschaftlicher Flächen nach Landes-Erosionsschutzverordnung (LESchV) auf der Basis des Direktzahlungen-Verpflichtungen-Gesetzes (DirektZahlVerpflG); Landwirte, die aufgrund von Direktoder sonstigen Stützungszahlungen zur Erosionsvermeidung verpflichtet sind, können die Erosionsgefährdungsklassen dort online abfragen.

Daneben hat die LWK mit Unterstützung des Ministeriums für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (MKULNV) ein, auf ein Geoinformationssystem (GIS) gestütztes Erosionsschutzberatungsinstrument "Erosionsmanagement in der Landwirtschaft" (EMiL) für die Erosionseinschätzung in konkreten Einzelfällen und zur Ermittlung der Wirksamkeit von Schutzmaßnahmen entwickelt. Ergänzend sind NRW-spezifische "C-Faktoren" auf der Grundlage einer Fotodokumentation zum Bodenbedeckungsgrad verschiedener Kulturarten entwickelt worden.

Zur Gefahrenabwehr nach § 8 Bundes-Bodenschutz-Verordnung (BBodSchV) ist die Eintrittswahrscheinlichkeit von sich wiederholenden Erosionsereignissen durch Abschätzung im Einzelfall entscheidend.

30. Unterscheiden sich die Gebietskulissen nach Zielrichtung und Rechtsgrundlage?

Aus den genannten Rechtsgrundlagen ergeben sich unterschiedliche Zielrichtungen:

- Die vorsorgeorientierte Beratung basiert auf einer umfassenden Gebietskulisse mit allen 6 Bewertungsstufen der DIN 19708 von "Enat0 keine bis sehr geringe Erosionsgefährdung" bis "Enat5 sehr hohe Erosionsgefährdung" und berücksichtigt regional differenzierte Niederschlagsdaten aus einem 30-Jahres-Zeitraum mit Angaben über die Intensität von Starkregenereignissen.
- Die Gebietskulisse der LESchV beschränkt sich als Kontrollinstrument für die Überwachung von Erosionsschutzanforderungen lediglich auf die Bewertungsstufen 3 5 mit einer von der DIN etwas abweichenden Klasseneinteilung und verwendet keinen Niederschlagsfaktor.

31. Welche Maßnahmen werden zur Vorsorge gegen Bodenerosion und zur Gefahrenabwehr angewandt?

Von den zu Frage 29 genannten Erosions-Faktoren können die Hanglänge von Ackerflächen (L-Faktor) durch Anlage von Filterstreifen und die Bewirtschaftung (C-Faktor) mit dem Ausmaß der Bodenbedeckung durch Pflanzen bzw. Pflanzenreste beeinflusst werden. Bei der Bodenbedeckung sind die Zeiträume höchster Starkniederschläge (Wintermonate und spätes Frühjahr) entscheidend. Daher kommen als Maßnahmen zur Verbesserung der Bodenbedeckung die Fruchtartenauswahl, der Anbau von Zwischenfrüchten, die Durchführung von Mulch- und Direktsaatverfahren mit Verzicht auf Pflügen sowie bei stark geneigten Flächen die Umwandlung in Dauergrünland in Betracht. Diese werden aufgrund der o.g. Bewertungsgrundlagen zur bodenschutzrechtlichen Vorsorge empfohlen oder zur Gefahrenabwehr angeordnet.

32. Können diese Maßnahmen durch Förderung über Agrarumweltmaßnahmen unterstützt werden?

Ja, soweit sie über die vorgenannten rechtlichen Pflichten hinausgehen.

Auf der Grundlage des NRW-Programms Ländlicher Raum 2007 bis 2013 wurden in NRW z.B. 5jährig angelegte Erosionsschutzmaßnahmen (Mulch- und Direktsaatverfahren sowie die Anlage von Erosionsschutzstreifen) angeboten und werden bis 2018 ausfinanziert. Im zukünftigen NRW-Programm Ländlicher Raum ist außerdem der deutliche Ausbau der Förderung von Erosionsschutzstreifen vorgesehen.

3. Boden / Humusgehalte

33. Wie hat sich der Humusgehalt der Böden in Nordrhein-Westfalen in den letzten 30 Jahren entwickelt? Gibt es regionale Unterschiede?

Zum aktuellen Status und der zeitlichen Entwicklung der Humusgehalte liegen folgende Auswertungen vor: 2006 wurde die Studie "Humusgehalte in nordrhein-westfälischen Ackerböden: Aktueller Status und zeitliche Entwicklung" (Prenger, A.C., Welp, G., Marquardt, U., Koleczek, B., Amelung, W., Bonn 2006) im Auftrag des Landesumweltamtes erstellt. Da diese Auswertung nicht auf Zeitreihenuntersuchungen beruhte und die festgestellten Veränderungen nicht eindeutig waren, wurde ein Humusmonitoring von repräsentativen Ackerstandorten in NRW empfohlen. Dieses begann 2009 unter Federführung des LANUV. Im Rahmen des Monitorings wurden 155 Standorte einmalig untersucht, repräsentativ verteilt auf den Anteil der Ackerbauflächen in den Regionen. Darüber hinaus werden 45 Standorte, verteilt auf 15 Standorte auf Lößböden in der Rheinischen Bucht, 15 überwiegend Gemüsebaustandorte im Niederrheinischen Tiefland um Krefeld und 15 Standorte in der Westfälischen Bucht über 15 Jahre jährlich auf die Humusgehalte und alle drei Jahre auf die Humusvorräte untersucht. Darüber hinaus hat die LWK Humusgehalte von bei der LUFA untersuchten Bodenproben ab 2006 bis 2012 ausgewertet.

Wie die Auswertung der LWK (s. Abb. 9) bzw. des Humusmonitorings (s. Abb. 10) zeigen, gibt es regionale Unterschiede und innerhalb der Region unterschiedlich große Spannen, die sowohl auf die Bewirtschaftung (z.B. Fruchtfolge, organische Düngung) als auch die Bodentypen und -arten (Grundwasser beeinflusste Böden, Plaggenesche, tonige oder sandige Böden) und die Lage der Flächen (Höhe über NN) zurückzuführen sind. Dargestellt werden für die fünf Großlandschaften die Spanne zwischen dem 25. und dem 75. Perzentil (blaues bzw. gelbes Rechteck). Darüber hinaus ist der Median-Wert (50. Perzentil) angegeben.

Damit wird deutlich, dass die im Humusmonitoring durch das LANUV ausgewählten Flächen für die Regionen Niederrheinisches Tiefland, Rheinische Bucht und Westfälische Bucht gut die Humusgehalte repräsentieren, die die LWK für eine viel größere Anzahl von Flächen ermittelt hat. Die niedrigeren Medianwerte beim Humusmonitoring im Bergischen Land/Sauerland und in Ostwestfalen sind auf die geringe Probenzahl (40 Ostwestfalen, 15 Berg. Land/Sauerland) zurückzuführen, die insbesondere für das Berg. Land/Sauerland aufgrund der ausgewählten Untersuchungsstandorte nur eingeschränkt repräsentativ für die ganze Region waren.

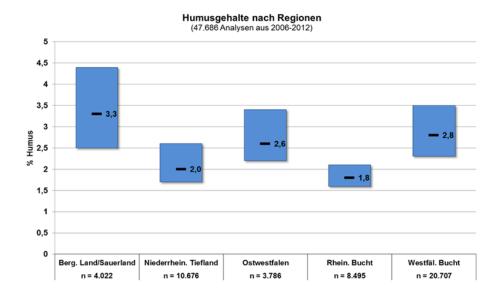


Abbildung 9: Humusgehalte nach Regionen (Auswertung LWK, 47.686 Analysen aus 2006 – 2012)

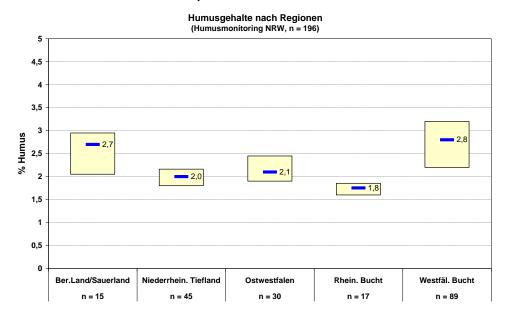


Abbildung 10: Humusgehalte nach Regionen (Humusmonitoring LANUV NRW, n = 196)

34. Werden mögliche Veränderungen der Humusgehalte durch den Klimawandel ermittelt?

Seit 2009 wird ein systematisches Humusmonitoring auf Ackerstandorten in NRW durchgeführt. Wie auch Untersuchungen in anderen Bundesländern (Niedersachsen, Bayern) zeigen, ist bisher keine signifikante Veränderung festzustellen.

Außerdem wurden die Proben im Rahmen dieses Untersuchungsprogramms in 4 Humusfraktionen differenziert, dabei konnten Unterschiede in der Verteilung dieser Fraktionen in den drei Regionen festgestellt werden. Insbesondere die Standorte aus der Westfälischen Bucht wiesen eine andere Verteilung der Humusfraktionen auf. Über Auswirkungen des Klimawandels kann jedoch auch bei dieser Fraktionierung noch keine belastbare Aussage gemacht werden.

Gleiches gilt für vom Forschungszentrum Jülich in Zusammenarbeit mit der Universität Bonn im Auftrag des LANUV angewandte Prognosemodelle der Humusentwicklung unter sich verändernden klimatischen Bedingungen. Die durch erwartete Ertragssteigerungen erhöhte Humusbildung durch Ernterückstände scheint den durch steigende Temperaturen prognostizierten Humusabbau weitgehend auszugleichen.

35. Teilt die Landesregierung die Einschätzung, dass es in Folge der Biogasnutzung zur Intensivierung des Ackerbaus und somit der Bodennutzung gekommen ist?

Unter der Intensität der Produktion wird im Allgemeinen das Ausmaß und die Relation des Einsatzes der Produktionsfaktoren Arbeit, Kapital und Boden verstanden. Mit Blick auf den Ackerbau bzw. die Bodennutzung sind dies z.B. Häufigkeit und Intensität der Bodenbearbeitung und das Ausmaß des Einsatzes von Produktionsmitteln (z.B. Dünger, PSM, Saatgut, Treibstoff). Die Intensität des Anbaus von Energiepflanzen für Biogasanlagen auf dem Acker unterscheidet sich bei den hauptsächlich verwendeten Kulturen (Mais, Getreide, Rüben) nicht grundsätzlich von der des Anbaus zu Nahrungs- oder Futterzwecken. Hinsichtlich des Einsatzes von PSM ist tendenziell eher von einer geringeren Intensität auszugehen (siehe Antwort zu Frage 37). Insofern kann – bezogen auf die jeweilige Kultur bzw. einzelne Ackerfläche – grundsätzlich keine Intensivierung festgestellt werden. In gewissem Umfang erfolgt zwar in einigen Betrieben ein Anbau von Energiepflanzen mit 2 Ernten pro Jahr (z.B. Getreide-Ganzpflanzensilage mit nachfolgender Zweitfrucht; Grünroggen mit Mais als Zweitfrucht...), die Intensität in der jeweiligen Kultur ist jedoch gegenüber einem Hauptfruchtanbau tendenziell geringer.

Anders stellt sich die Situation möglicherweise auf Grünland dar. Dort wo bislang extensiv zu Futterzwecken genutztes Grünland für die Biogasnutzung verwendet wird, kommt es i.d.R. zu einer häufigeren Schnittnutzung und damit zu höherer Intensität der Bodennutzung.

Der Anbau von Energiepflanzen für Biogasanlagen hat allerdings dazu geführt, dass neben die etablierten landwirtschaftlichen Verwertungspfade (Nahrungsmittel, Futtermittel, Energiepflanzen für Biotreibstoffe) eine weitere, konkurrenzstarke Verwertungsrichtung mit zusätzlichen Flächenansprüchen getreten ist. Hierdurch ist es einerseits zu einem Verdrängungswettbewerb mit anderen – vergleichsweise extensiveren und wettbewerbsschwächeren - Kulturen auf der vorhandenen Ackerfläche gekommen, der zu einer verstärkten Anwendung von Düngemitteln für den Energiepflanzenanbau geführt hat, andererseits hat regional auch der Druck auf eine Umnutzung von Grünland zu Ackerland (Umbruch) zugenommen. Ebenso konnte regional ein Zusammenhang zwischen dem Anstieg der Pachtpreise und dem Bau von Biogasanlagen beobachtet werden.

Die Ausweitung des Anbaus von Energiepflanzen für Biogasanlagen fiel in Nordrhein-Westfalen zeitlich mit der Aufhebung der obligatorischen Stilllegungsverpflichtung, einem deutlichen Anstieg des Preisniveaus für Getreide und Ölpflanzen als auch einer regionalen Ausweitung der Tierhaltung zusammen. Diese Entwicklungen haben ebenfalls zu einer Intensivierung des Ackerbaus bzw. der Bodennutzung beigetragen. Verschärft wird der Nutzungsdruck durch die Umwandlung von Acker- und Weideflächen zu Siedlungs- und Verkehrsflächen. Nach Auskunft des Landesamtes für Natur, Umwelt und Verbraucherschutz (LANUV) werden in Nordrhein-Westfalen täglich etwa 10 ha zusätzlicher Freiraum für Siedlungs- und Verkehrsflächen in Anspruch genommen, dies überwiegend zu Lasten von land-

wirtschaftlichen Flächen. In Regionen mit einer größeren Zahl von Biogasanlagen teilt die Landesregierung insofern die in der Frage genannte Einschätzung, sieht jedoch bei landesweiter Betrachtung darüber hinaus weitere Einflussfaktoren als ebenso relevant für die erfolgte Intensivierung der Bodennutzung an.

36. Welche Pflanzen werden zur Nutzung in Biogasanlagen angebaut? Aufstellung der 10 häufigsten Substrate mit derzeitiger Hektaranzahl in NRW.

Die amtliche Statistik zur Bodennutzung unterscheidet nicht nach Verwertungsrichtungen des Anbaus, daher liegt der Landesregierung keine Übersicht über den Umfang der zur Nutzung in Biogasanlagen angebauten Pflanzen vor. Im Auftrag des MKULNV erhebt die LWK NRW auf freiwilliger Basis seit vielen Jahren Daten zu landwirtschaftlichen Biogasanlagen in NRW. Diese sog. "Biogasdatenbank" erfasst auch Art und Umfang des Substrateinsatzes, jedoch keine Anbauflächen. Diese lassen sich lediglich näherungsweise aus den Angaben der Betreiber umrechnen.

Hinsichtlich der Häufigkeit des Substrateinsatzes in Biogasanlagen ergibt sich aus der Biogasdatenbank nachfolgende Rangliste der Energiepflanzennutzung: Silomais (in 96 % der Anlagen), Grünroggen (36 %), Zuckerrüben (34 %), Grassilage (31 %), Getreide-Ganzpflanzen-Silage (21 %), Zwischenfrüchte (12 %), Getreidekörner (10 %), sonstige nachwachsende Rohstoffe (10 %), pflanzliche Nebenprodukte und mehrjährige Energiepflanzen (4 %).

Umgerechnet ergeben sich nachfolgende Anbauflächen (Stand 2013): Silomais 69.000 ha, Grünroggen 7.500 ha, Grassilage 3.500 ha, Getreidekörner 2.200 ha, Zuckerrüben 2.100 ha, Getreide-Ganzpflanzen-Silage 1.900 ha, sonstige Nachwachsende Rohstoffe 1.200 ha, Zwischenfrüchte 4.300 ha. Insgesamt umfasste der Anbau von Energiepflanzen für Biogasanlagen im Jahr 2013 demnach ca. 92.000 ha, entsprechend ca. 8,6 % der Ackerfläche Nordrhein-Westfalens.

37. Welche Pflanzenschutzmittel werden beim Substratanbau für Biogasanlagen verwendet?

Über die konkrete Verwendung bestimmter PSM in einzelnen Kulturen oder Verwertungsrichtungen liegen der Landesregierung keine gesicherten Daten vor, demnach lassen sich keine Aussagen zur Anwendung einzelner PSM beim Substratanbau für Biogasanlagen machen.

Bei der Zulassung von PSM wird i.d.R. nicht nach der Verwertungsrichtung der angebauten Kultur unterschieden. Dies bedeutet, dass alle für die jeweilige Kulturpflanze (z.B. Mais, Zuckerrüben) zugelassenen PSM auch bei deren Anbau zur Verwendung als Biogassubstrat zulässig sind. Der Anbau als Biogassubstrat erfordert keine Berücksichtigung spezieller Schaderreger oder Unkräuter, so dass unterstellt werden kann, dass grundsätzlich vergleichbare Mittel eingesetzt werden, wie sie auch beim Anbau zu Nahrungs- oder Futtermittelzwecken Verwendung finden. Teilweise kann jedoch beim Anbau von Biogassubstraten die Einsatzhäufigkeit und Pflanzenschutzintensität deutlich reduziert werden. Durch frühere Erntetermine entfällt häufig eine Behandlung, z.B. bei Getreide-Ganzpflanzensilage die Abschlussbehandlung mit Fungiziden und Insektiziden. Weiterhin sind die Qualitätsansprüche an die Biomasse beim Substratanbau nicht so hoch wie beim Futter- und Marktfruchtanbau. Dadurch können höhere Befallsintensitäten von Schadorganismen oder Fremdbesätze durch Ruderal- und Segetalvegetation toleriert werden.

38. Gibt es Anzeichen für erhöhten Pestizid- und Düngereinsatz beim Anbau von NAWARO zur Verwertung als Substrat in Biogasanlagen und wenn ja, wie wirkt sich dies auf die Boden- und Grundwasserqualität aus?

Der Landesregierung liegen keine Daten über einen erhöhten Einsatz von Dünge- und Pflanzenschutzmitteln beim Anbau von Energiepflanzen als Substrat für Biogasanlagen vor.

39. Welche Nährstoffe befinden sich in den Gärresten? Wie sehen die Nährstoff- und Humusgehalte aus unterschiedlichen Substraten aus?

Die Nährstoffgehalte der Gärreste hängen ab von der Art und dem Mengenverhältnis der vergorenen Substrate. Einen Überblick über die Zusammensetzung und die Schwankungsbreite in der Zusammensetzung gibt die nachfolgende Tabelle für flüssige (bis 15 % Trockensubstanz (TS)) und feste (über 15 % TS) Gärreste aus der Vergärung von Wirtschaftsdüngern und nachwachenden Rohstoffen in NaWaRo-Anlagen sowie flüssige Gärreste aus Kofermentanlagen.

Aufgrund der enormen Schwankungsbreite in der Nährstoffzusammensetzung ist es nicht möglich, zuverlässige Richtwerte zur Zusammensetzung von Gärresten herauszugeben. Somit verbleiben für die Anwender von Gärresten zur Erfüllung der Verpflichtung, vor der Ausbringung den Nährstoffgehalt zu ermitteln, nur die Analyse repräsentativer Proben oder die Berechnung der Zusammensetzung aus den Angaben zu den vergorenen Substraten.

Tabelle A13: Zusammensetzung von Gärresten nach vergorenem Substrat und Trockensubstanzgehalt (TS)

Vergorenes Substrat	TS-Gehalt		Nährstoffgehalte in Frischr				Humuswirkung	
Merkmal	(%)	Gesamt-N	Ammonium-N	Phosphat	Kali	Magnesium	(kg Humus-C/t)	
NaWaRo	bis 15	(n = 1.122)						
Median	6,6	0,52	0,32	0,22	0,56	0,09	8,32	
Oberes Quartil	7,8	0,61	0,4	0,28	0,63	0,11	9,57	
Unteres Quartil	5,6	0,45	0,27	0,18	0,49	0,07	7,38	
NaWaRo	über 15	(n = 87)						
Median	20,3	0,67	0,385	0,54	0,56	0,25	28,08	
Oberes Quartil	25,6	0,87	0,455	0,835	0,705	0,4025	36,96	
Unteres Quartil	16,95	0,595	0,27	0,465	0,49	0,21	22,49	
Koferment	bis 15	(n = 47)						
Median	6,60	0,55	0,37	0,27	0,52	0,10	8,32	
Oberes Quartil	8,40	0,68	0,53	0,38	0,61	0,13	10,24	
Unteres Quartil	5,45	0,49	0,30	0,21	0,42	0,08	7,25	

Die Humuswirkung der Gärreste kann nach den Vorgaben der Direktzahlungen-Verpflichtungenverordnung (DirektZahlVerpflV) zur Humusbilanzierung abgeschätzt werden. Demnach liefern flüssige Gärreste rund 7 bis 9 kg Humuskohlenstoff je Tonne Substrat, bei den festen Gärresten sind die Werte entsprechend des höheren TS-Gehaltes mit 23 bis 37 kg Humus-Kohlenstoff je Tonne höher (siehe Tabelle). Neuere Untersuchungsergebnisse geben jedoch Anlass zu der Annahme, dass die Humuswirkung von flüssigen Gärresten höher ist als derzeit angenommen.

40. Gibt es Erkenntnisse, dass durch die Aufbringung von Gärresten aus Biogasanlagen die Stickstoffgehalte im Boden zusätzlich erhöht werden?

Die Auswertung der Ergebnisse von Gärresteanalysen (s. Frage 39) hat ergeben, dass zwischen 58 und 78 % des in den Gärresten enthaltenen Stickstoffs in der mineralischen Ammoniumform vorliegen. Dieser Stickstoff ist unmittelbar pflanzenverfügbar wie Mineraldüngerstickstoff und wird sich nicht in den Böden anreichern. Der restliche Stickstoff liegt in organischer Bindung vor und geht teilweise in den Humusvorrat des Bodens ein. Im Vergleich zu unvergorener Gülle oder Mist ist der Anteil des Stickstoffs in organischer Bindung in Gärresten geringer, so dass die Stickstoffgehalte im Boden durch Gärreste grundsätzlich vergleichsweise geringer erhöht werden.

In dem Maße, in dem die Düngung mit Gärresten zu einer Erhöhung des Humusgehaltes beiträgt, steigt auch der Stickstoffgehalt des Bodens an. Da Gärreste häufig zu Silomais ausgebracht werden, der den Humuszehrern zugerechnet wird, wird sich die Humusanreicherung der Böden in engen Grenzen bewegen. Wie hoch die Humus- und damit die Stickstoffanreicherung sein werden, hängt von den Standort- und Bewirtschaftungsbedingungen (Bodenart, Niederschlagsverhältnisse, Temperaturen, Intensität der Bodenbearbeitung) ab und kann nur im Rahmen langfristiger Feldversuche ermittelt werden. Der Landesregierung sind entsprechende, ausreichend lange laufende Versuche nicht bekannt.

41. Welche Maßnahmen gibt es, um den Humusgehalt der Böden zu erhalten bzw. wieder zu erhöhen (z. B. durch welche Bewirtschaftungsmethoden)?

Der Humusgehalt bzw. der Kohlenstoffvorrat von Böden hängt von den jeweiligen Standortbedingungen ab und wird von der Bewirtschaftung, der Bodenbearbeitung auf Ackerflächen und von Landnutzungsänderungen beeinflusst. Im Hinblick auf Maßnahmen sind folgende zwei Handlungsbereiche zu unterscheiden:

a) Erhaltung kohlenstoffreicher Böden

Dazu gehören organische Böden, die einen Humusgehalt von mindestens 8 % in einem mindestens 10 cm mächtigen Horizont aufweisen. Dies sind insbesondere Hochund Niedermoore und als Grünland genutzte Auenböden. Die Funktion als Kohlenstoffspeicher und ihre Bedeutung als Quelle für klimawirksame Emissionen macht diese Böden neben Aspekten des Boden- und Gewässerschutzes und der Biodiversität u.a. zu einem wichtigen Handlungsfeld des Klimaschutzes. Auf der Grundlage einer in Vorbereitung befindlichen Zustandserfassung von Moorstandorten in NRW sollen im Rahmen des Klimaschutzplans Maßnahmen zu deren Wiedervernässung ergriffen werden. Ergänzend wird auf die Regelungen zur Grünlanderhaltung hingewiesen (Vermeidung von Umbruch).

b) Humuserhaltung im Ackerbau

Auf Ackerflächen sind die Humuserhaltung und die ständige Nachlieferung von Umsetzungsprodukten vorrangiges Ziel. Eine Steigerung der Humusvorräte ist im Rahmen der ackerbaulichen Nutzung nur begrenzt möglich und kann zu anderen Nachteilen (Schadstoffeintrag, Nitratfreisetzung, Energieaufwand) führen. Daher zielen sowohl die Beratung zur "guten fachlichen Praxis" nach § 17 BBodSchG als auch die Anforderungen der DirektZahlVerpflV und ergänzende AUM auf die Sicherstellung einer ausreichenden Zufuhr organischer Substanz zum Ausgleich des Abbaus und zur Erhaltung der Kohlenstoffspeicherung ab. Eine ausgeglichene Humusbilanz hat zudem Bedeutung für verschiedene Bodenfunktionen, zur Nährstoffspeicherung und zum Erosionsschutz. Dazu wird das in Anlage 3 der DirektZahlVerpflV verankerte Instrument der Humusbilanzierung (nach VDLUFA, 2004) eingesetzt.

Eine Förderung von Humusgehalt und -qualität wird durch eine standortgerechte vielfältige Fruchtfolge, vor allem durch Integration von humusmehrenden Fruchtarten wie Kleegras, Luzerne oder Körnerleguminosen, den Anbau von Zwischenfrüchten, eine geringe Bearbeitungsintensität und die ausreichende Versorgung des Bodens mit organischer Substanz (Ernterückstände, Stroh, Mist, Kompost) erreicht. Eine dauerhafte Anhebung des Humusgehaltes kann nur begrenzt und sehr langfristig mit ganzheitlichen Anbauverfahren, die die genannten Faktoren berücksichtigen, erreicht werden. Eine Anhebung des Humusgehaltes ist reversibel; durch Änderung der Bewirtschaftung kann es auch wieder zu einem Absinken kommen.

4. Bodenschutzpolitik

42. Welche Regeln sind nach Einschätzung der Landesregierung in der landwirtschaftlichen Bewirtschaftung zu beachten, damit die Landwirtschaft einen direkten positiven Beitrag zum Bodenschutz, dem Schutz des Klimas und der biologischen Vielfalt leisten kann?

Die Regeln "Guter landwirtschaftlicher Praxis bei der landwirtschaftlichen Bodennutzung" sind in § 17 Abs. 2 BBodSchG aufgelistet. Sie sollen über die nach Landesrecht zuständigen Beratungsstellen vermittelt werden. Das Zusammenwirken der in NRW zuständigen LWK mit den Bodenschutzbehörden ist in einem ergänzenden Erlass geregelt worden. Daneben führt das Bundesnaturschutzgesetz (BNatSchG) in § 5 Abs. 2 die Grundsätze der "guten fachlichen Praxis" für die Landwirtschaft auf, die bei der landwirtschaftlichen Nutzung zu beachten sind (siehe auch Antwort zu Frage 93).

43. Sind diese Regeln insgesamt oder teilweise für die Landwirtschaft verbindlich vorgeschrieben?

Die vorgenannten Regeln sind nicht verbindlich. Das Bodenschutzrecht verfügt zur Vorsorge in der Landwirtschaft über keine ordnungsrechtlichen Vorgaben und keine Anordnungsbefugnis.

44. Werden diese Regeln von der Landwirtschaft in NRW flächendeckend befolgt, und wenn nein, was will die Landesregierung unternehmen, um deren Umsetzung sicherzustellen?

Eine begrenzte Kontrolle der Anforderungen zum Erosionsschutz und zur Humuserhaltung ist bis einschließlich 2014 über die diesbezüglichen Regelungen der DirektZahlVerpflV und der LESchV erfolgt. Seit Inkrafttreten der Verordnung in 2010 wurde im Rahmen der CC-Kontrollen bisher nur ein Verstoß festgestellt und geahndet. Ab 2015 ist die dreigliedrige Fruchtfolge (war bisher die am häufigsten genutzte Option zur Erfüllung der CC-Anforderungen zur Erhaltung der organischen Substanz im Boden) Bestandteil des Greenings und damit für Betriebe ab 15 ha Ackerfläche obligatorisch. Die Möglichkeit, den Erhalt der organischen Substanz mit der Erstellung einer Humusbilanz oder mit Bodenhumusuntersuchungen der einzelnen Ackerschläge zu erfüllen, sieht das neue System ab 2015 nicht mehr vor.

45. Welchen Beitrag haben die bestehenden Regelungen in der landwirtschaftlichen Produktion zum Bodenschutz geleistet? Waren hierbei die Cross Compliance aus Sicht der Landesregierung wirksam und ausreichend?

Siehe Antwort zu Frage 44.

46. Wie bewertet die Landesregierung bestehende negative Auswirkungen bzw. zukünftige Risiken auf die Böden in NRW, die sich durch den gesteigerten Anbau von Mais ergeben?

Grundsätzlich kann Maisanbau mit nachteiligen Wirkungen auf Böden verbunden sein. Durch die Reihenkultur und den relativ späten Reihenschluss können Maisanbauflächen von Bodenerosion betroffen sein. Schwere Erntemaschinen und der späte Erntezeitpunkt in einer niederschlagsreichen Jahreszeit können auf ungünstigen Standorten Bodenschadverdichtungen begünstigen. Als starker Humuszehrer kann sich Silomais durch den Abbau der organischen Bodensubstanz negativ auf den Humusgehalt der Böden auswirken. Diese möglichen negativen Auswirkungen sind jedoch weder unvermeidbar noch treten sie flächendeckend auf.

Ob sich der Anbau von Mais im konkreten Einzelfall nachteilig auswirkt, hängt von vielen Faktoren wie Bodenart, Fruchtfolge, Vorkultur, Lage und Neigung der Fläche, Bodenbearbeitung, Kulturführung sowie Erntezeitpunkt und -technik ab. Einen besonderen Stellenwert nimmt dabei die Fruchtfolge ein. Mit steigenden Anteilen von Mais in der Fruchtfolge wächst das Risiko, dass es zu den o.g. nachteiligen Auswirkungen des Maisanbau kommt. Insgesamt sollte ein hoher Maisanteil in der Fruchtfolge vermieden und ein Anbau auf Problemstandorten wie z.B. stark hängigen oder staunassen Standorten möglichst nicht vorkommen. Auf erosionsgefährdeten Flächen sind außerdem Schutzmaßnahmen wie der Anbau von Untersaaten und Zwischenfrüchten anzuwenden.

Ein hoher Maisanteil in der Fruchtfolge sollte nicht nur vor dem Hintergrund des Bodenschutzes vermieden werden. Auch aus Gründen der Pflanzengesundheit (z.B. Maiswurzelbohrer) sowie zum Schutz der biologischen Vielfalt (siehe Antwort zu Frage 91) ist eine vielgliedrige Fruchtfolge notwendig. In einigen Regionen Nordrhein-Westfalens besteht hier Handlungsbedarf, da auf Kreisebene Maisanteile an der Ackerfläche von deutlich über 40% und mehr erreicht werden.

- C. Landwirtschaft und Umweltmedium Wasser
- 1. Wasserbedarf
- 47. Wie viele m³ Wasser werden in NRW insgesamt für die öffentliche, industrielle und landwirtschaftliche Wassernutzung im Durchschnitt jährlich eingesetzt?

Erhebungen zur öffentlichen und nicht-öffentlichen Wasserversorgung werden nach § 7 und § 8 Umweltstatistikgesetz alle drei Jahre durchgeführt. Zahlen zum Erhebungsjahr 2013 liegen erst im Jahr 2015 vor.

Tabelle A14: Wasserversorgung nach Eigengewinnung, Fremdbezug und Wasserabgabe an Letztverbraucher in Mill. m³

Merkmal	2001	2004	2007	2010		
Wasseraufkommen insgesamt	1 738,6	1 719,9	1 737,5	1 734,7		
Eigengewinnung						
 Grund- und Quellwasser 	530,1	564,0	504,3	496,0		
 angereichertes Grundwasser 	347,2	350,7	359,0	368,1		
- Uferfiltrat	200,7	177,3	154,4	121,1		
- Oberflächenwasser	207,0	209,0	187,4	199,9		
Fremdbezug	453,6	418,9	532,3	549,6		
Wasserverwendung	Wasserverwendung					
Wasserabgabe an Letztverbraucher						
Haushalte und Kleingewerbe	914,9	904,5	877,2	865,1		
– gewerbliche Unternehmen und sonstige Abnehmer	261,4	265,5	227,8	234,8		
– andere Bundesländer oder das Ausland	0,8	0,8	0,6	0,7		
Wasserabgabe zur Weiterverteilung	440,8	434,6	512,7	518,3		
Leitungsverluste und Wasserwerkseigenverbrauch	120,7	114,5	119,1	115,8		

Nichtöffentliche Wasserversorgung

Hierzu sind ab dem Berichtjahr 2007 alle drei Jahre Betriebe berichtspflichtig, die Wasser gewinnen oder die einen Fremdbezug an Wasser von mindestens 10 000 Kubikmeter pro Jahr haben, sowie Betriebe die Wasser oder Abwasser in Gewässer einleiten.

Tabelle A15: Nichtöffentliche Wasserversorgung in Mill. m3

Merkmal	2007	2010		
Wasseraufkommen insgesamt	5 899,0	5 635,8		
Eigengewinnung				
– Grund-/Quellwasser	900,9	920,9		
Uferfiltrat	314,1	303,0		
 angereichertes Grundwasser 	26,8	45,3		
– Oberflächenwasser	3 766,9	3 469,8		
Fremdbezug	890,3	896,8		
Wasserverwendung				
Einfach genutzt				
– als Kühlwasser	3 572,5	3 448,8		

Merkmal	2007	2010
 zur Beregnung oder Bewässerung 	6,3	9,2
für Produktionszwecke	378,6	328,9
– als Belegschaftswasser	21,4	19,1
Zur Mehrfachnutzung eingesetzt	95,9	96,3
Zur Kreislaufnutzung eingesetzt	627,6	554,6
Abgegeben oder ungenutzt abgeleitet	1 196,7	1 178,9

Weitere Details siehe unter https://webshop.it.nrw.de/download.php?id=18207

Nach § 46 Abs. 1 Nr. 1 Wasserhaushaltsgesetz (WHG) bedürfen Grundwasserentnahmen "für den Haushalt, den landwirtschaftlichen Hofbetrieb, für das Tränken von Vieh außerhalb des Hofbetriebs oder in geringen Mengen zu einem vorübergehenden Zweck" keiner wasserrechtlichen Erlaubnis.

Eine über die Anforderungen des Umweltstatistikgesetzes hinausgehende systematische oder nutzungsbezogene Erfassung erfolgt deshalb nicht.

Es ist darauf hinzuweisen, dass die vorher genannten Zahlen von den Zahlen zu Berichten zum Wasserentnahmeentgelt abweichen können. Dies liegt in der unterschiedlichen Erhebungsgrundlage und -systematik begründet. Die Festsetzung des Wasserentnahmeentgelts erfolgt auf der Grundlage jährlicher Erklärungen der zur Entrichtung eines Entgelts verpflichteten Wasserentnehmer.

48. Welche Formen der Wassernutzung (Beregnung, Tiertränke oder dergl.) gibt es in der Landwirtschaft?

Unter "landwirtschaftlichen Hofbetrieb" im Sinne des § 46 Abs. 1 Nr. 1 WHG werden im Allgemeinen nachfolgende Nutzungen subsumiert:

- Wasserbedarf für den Haushalt der Landwirte und für das Vieh
- Wasserbedarf zum Säubern der Ställe, von Nutzflächen und des Viehs
- Wasserbedarf zum Betrieb, Waschen und Reinigen von Geräten und technischen Anlagen, die zu einem modernen landwirtschaftlichem Betrieb gehören (z.B. Milchkühlung, Schwemmentmistung, Feldspritze)
- Wasserbedarf zur Bewässerung von Hof- und Hausgärten (nicht Gartenbau zu Erwerbszwecken)
- Wasserversorgung betriebszugehöriger Personen, die auf dem Hof (aber nicht im Haushalt der Landwirte) leben.

Darüber hinaus sind folgende Formen der Wassernutzung im landwirtschaftlichen und gartenbaulichen Bereich zu benennen:

• Beregnung landwirtschaftlicher Ackerbaukulturen auf Grund fehlenden natürlichen Wasserangebots in Trockenperioden

- Beregnung von Spezialkulturen, z.B. Gemüse, um bestimmte Erträge und Qualitäten zu erzielen
- Tröpfchenbewässerung von Spezialkulturen, auch in Verbindung mit einer gezielten Nährstoffzufuhr, z.B. in Erdbeeren, Gurken und neuerdings auch Spargel
- Gezielte Bewässerung von auf Steinwolle kultivierten Kulturen in Verbindung mit einer gezielten Nährstoffzuführung, z.B. im Tomatenanbau unter Glas
- Über-Kopf-Beregnung von Gartenbaukulturen mittels Gießwagen und Ebbe-/Flut-Systeme zur Bewässerung von Gartenbaukulturen auf abgedichteten Böden in Treibhäusern oder Ebbe-/Flut-Tischen (bei Zierpflanzenberegnung teilweise aus aufgefangenem kalkarmem Regenwasser)
- Wasch-, Reinigungs- und Spülwasser zur Vermarktungsvorbereitung, z.B. Möhrenwäsche, Tulpenzwiebelwäsche
- Frostschutzberegnung in Spezialkulturen wie z.B. Obstplantagen
- Viehtränke auf Weiden
- Beregnung von Paddocks, Reitplätzen und Reithallenplätzen zur Reduzierung der Staubbelastung beim Beritt sowie zur Konditionierung des Platzes
- Speisung von Ebbe-/Flut-Systemen auf Reitplätzen
- Wasser zur Fischteicheinspeisung

Ferner wird im landwirtschaftlichen und gartenbaulichen Bereich Wasser auch als Löschwasser oder zur Energiegewinnung (Wasser-Wärmetauscher, Wasserkraft) genutzt. Auch die Entwässerung durch Dränagen ist als Wassernutzung anzusehen.

49. Wie viele m³ Wasser nutzen anteilig die Landwirtschaft und Gartenbau in NRW?

Auf die Antwort zur Frage 47 wird hingewiesen.

Belastbare Zahlen zur Höhe der Wassernutzung in Landwirtschaft und Gartenbau liegen nicht vor. Neben den bereits beschriebenen erlaubnisfreien Nutzungen ist auch bei den im Einzelfall erteilten Erlaubnissen zu berücksichtigen, dass die tatsächlich entnommenen Mengen i.d.R. nicht erfasst bzw. kontrolliert werden, zumal sie bislang nicht dem Wasserentnahmeentgelt unterliegen.

Zu den genehmigten Entnahmemengen wird auf die Antwort zur Frage 50 verwiesen.

50. Wie viele private Gewinnungsanlagen wurden für die Landwirtschaft genehmigt (Einzelaufstellung mit Fördermengen und Ortsangaben)?

Die von den unteren Wasserbehörden laut deren Mitteilung erteilten Erlaubnisse zur Wasserentnahme sind in der nachfolgenden Tabelle aufgeführt. Es wird darauf hingewiesen, dass die genehmigten Mengen nicht die tatsächliche Entnahme widerspiegeln (s.a. Antwort zu den Fragen 47 bis 49)

Tabelle A16: Landwirtschaftliche Wassergewinnungsanlagen in Nordrhein-Westfalen

Bezirksregierung Arnsberg

Stadt Dortmund	4 Anlagen, Gesamtfördermenge: 47.259,25 m³/a					
Ennepe-Ruhr-	8 Anlagen, Gesamtfördermenge: 67.028 m³/a, davon					
Kreis	Witten	1	11.500 m³/a			
	Sprockhövel	5	34.528 m³/a			
	Wetter	1	20.000 m³/a			
	Hattingen	1	1.000 m³/a			
Hochsauerland-	18 Anlagen, Gesa	ımtförder	menge: 25.465 m³/a, davon			
kreis	Arnsberg	1	1.100 m³/a			
	Brilon	1	730 m³/a			
	Eslohe	2	3.048 m³/a			
	Hallenberg	1	7.300 m³/a			
	Marsberg	1	900 m³/a			
	Medebach	4	6.733 m³/a			
	Schmallenb.	1	15 m³/a			
	Sundern	4	4.239 m³/a			
	Winterberg	3	1.400 m³/a			
Kreis Unna	4 Anlagen, Gesan	ntfördern	nenge: 15.350 m³/a, davon			
	Lünen		3.750 m³/a,			
	Selm		1.600 m³/a,			

Bezirksregierung Detmold

Stadt Bielefeld	Anzahl: 10, Gesamtf	ördern	nanga 53 000 m ³ /a
Kreis Herford			menge 26.000 m³/a, davon
Riels Helloid	Bünde		•
) m³/a,
	Enger		0 m³/a
	Herford) m³/a
	Spenge) m³/a
	Vlotho) m³/a
Kreis Lippe		förderi	menge 345.267 m³/a, davon
	Bad Salzuflen	9	34.800 m³/a
	Barntrup	4	10.799 m³/a
	Blomberg	4	9.236 m³/a
	Detmold	4	7.500 m ³ /a
	Dörentrup	1	1.500 m ³ /a
	Extertal	9	73.300 m³/a
	Horn-Bad Meinberg	6	46.645 m³/a
	Kalletal	7	12.617 m³/a
	Lage	4	7.872 m³/a
	Lemgo	8	100.680 m ³ /a
			18.948 m³/a
	Lügde		5.210 m³/a
	Oerlinghausen		2.701 m³/a
	Schieder-Schwalenb	. 7	12.523 m³/a
	Schlangen	1	936 m³/a
Kr. Minden- Lübbe-		förderi	menge 662.080 m³/a, davon
cke	Lübbecke	2	16.000 m³/a
	Minden	1	30.000 m³/a
	Petershagen	1	26.280 m³/a

	Porta Westfalica	2	43.000	m³/a		
	Preußisch Oldendorf	2	12.300	m³/a		
	Rhaden	22	485.300	m³/a		
	Stemwede	6	49.200	m³/a		
Kreis Höxter	33 Anlagen, Gesamt	förde	rmenge 21	14.544 m	³/a, davon	
	Bad Driburg	3	11.815	m³/a		
	Beverungen	3	8.835	m³/a		
	Borgentreich	3	16.155	m³/a		
	Brakel	5	26.300	m³/a		
	Horn-Bad Meinberg	1	5.000	m³/a		
	Höxter	4	26.200	m³/a		
	Nieheim	3	12.580	. m³/a		
	Schlangen	1	20.000	m³/a		
	Steinheim	4	25.139	m³/a		
	Warburg	3	2.900	m³/a		
	Willebadessen	3	10.460	m³/a		
Kreis Gütersloh	119 Anlagen, Gesam	ntförd	lermenge 1	1.568.617	7 m³/a, dav	ron
	Gütersloh			571.797		
	Halle		3	7.775	m³/a	
	Harsewinkel		13	143.751	m³/a	
	Herzebrock-Clarholz		20	277.576	m³/a	
	Langenberg		3	47.840	m³/a	
	Rheda-Wiedenbrück		18	185.261	m³/a	
	Rietberg	8	100.765	m³/a		
	Schloß Holte-Stuken	k 8	126.542	m³/a		
	Verl		10	77.095	m³/a	
	Versmold		6	30.215	m³/a	

Bezirksregierung Düsseldorf

Stadt Düssel- dorf	65 Anlagen, Gesamtfördermenge 390.586 m³/a						
Stadt Duisburg	11 Anlagen, Gesan	ntförde	rmenge 28.850 m³/a				
Stadt Krefeld	46 Anlagen, Gesan	ntförde	rmenge 388.375 m³/a				
Stadt Mön-	20 Anlagen, Gesan	ntförde	rmenge 187.147 m³/a				
chengladbach							
Stadt Mülheim	3 Anlagen						
Stadt	2 Anlagen, Gesam	tförderr	menge: 8.650 m³/a				
Solingen		-					
Kreis Mettmann	18 Anlagen, Gesan	18 Anlagen, Gesamtfördermenge: 53.117 m³/a, davon					
	Erkrath	2	20 m³/a				
	Hilden	5					
	Langenfeld		41.230 m³/a				
	Monheim	2					
Rhein-Kreis	•		ermenge: 6.205.082 m	³/a, davon			
Neuss	Dormagen	69					
	Grevenbroich						
			716.750 m³/a				
	Kaarst		1.029.052 m³/a				
	Korschenbroich						
	Meerbusch		823.431 m³/a				
			720.007 m³/a				
	Rommerskirchen	15	524.880 m³/a				

Kreis	73 Anlagen, Gesamtfördermenge: 402.965 m³/a, davon					
Viersen	Brüggen	12	56.800 m³/a			
	Grefrath	1	2.500 m³/a			
	Kempen	3	20.800 m³/a			
	Nettetal	34	88.515 m³/a			
	Schwalmtal	2	12.000 m³/a			
	Tönisvorst	7	48.300 m³/a			
	Viersen	2	12.500 m³/a			
	Willich	12	61.550 m³/a			
Kreis	303 Anlagen, Gesa	mtförde	ermenge: 4.630.982 m³/a, davon			
Wesel	Alpen	49	962.307 m³/a			
	Bocholt	1	20.000 m³/a			
	Dinslaken	2	22.000 m³/a			
	Dorsten	2	14.000 m³/a			
	Duisburg	2	26.720 m³/a			
	Hamminkeln	46	779.328 m³/a			
	Hünxe	13	178.500 m³/a			
	Issum	1	16.000 m³/a			
	Kalkar	1	38.400 m³/a			
	Kamp-Lintfort	21	266.437 m³/a			
	Moers	19	382.350 m³/a			
	Neukirchen-Vluyn	13	230.870 m³/a			
	Rees	1	600 m³/a			
	Rheinberg	18	318.874 m³/a			
	Schermbeck	18	204.984 m³/a			
	Sonsbeck	25	275.424 m³/a			
	Uedem	1	45.000 m³/a			
	Voerde	5	64.134 m³/a			
	Wesel	31	303.260 m ³ /a			
	Xanten	34	481.794 m³/a			

Bezirksregierung Köln

Stadt Aachen	2 Anlagen, Gesamtfördermenge 45.000 m³/a				
Stadt Bonn	5 Anlagen, Gesamtfördermenge 50.100 m³/a				
Stadt Köln	6 Anlagen, Gesamtfö	rderme	nge 76.200 m³/a		
Stadt Leverkusen	12 Anlagen, Gesamtf	örderm	enge 152.800 m³/a		
Rheinisch-Berg.	5 Anlagen, Gesamtfö	rderme	nge 63.100 m³/a, davon		
Kreis	- Leichlingen	3	10.100 m³/a		
	- Burscheid	1	48.000 m³/a		
	- Bergisch Gladbach	1	5.000 m³/a		
Städteregion	19 Anlagen, Gesamtfördermenge 89.015 m³/a, davon				
Aachen	Baesweiler	3	39.015 m ³ /a		
	Eschweiler	3	4.850 m³/a		
	Herzogenrath 4	10.500) m³/a		
	Monschau	2	1.940 m³/a		
	Roetgen	1	300 m³/a		
	Simmerath	1	500 m³/a		
	Stolberg	2	5.960 m³/a		
	Würselen	3	25.950 m³/a		
Kreis	41 Anlagen, Gesamtf	örderm	enge 1.216.290 m³/a, davon		
Düren	Aldenhoven	3	84.700 m³/a		
	Düren 5	97.70	00 m³/a		

	Jülich 6	162.0	00 m³/a
	Kreuzau	2	98.000 m³/a
	Langerwehe	1	8.000 m³/a
	Linnich	8	270.550 m³/a
	Merzenich	1	15.000 m³/a
	Niederzier	1	80.400 m³/a
			1.000 m³/a
	Nideggen Nörvenich:	1 4	1.000 m ³ /a
	Titz:		7.000 m³/a
		1	
Kraja Hainahara	Vettweiß:	8 otförda	257.440 m³/a rmenge 1.163.951 m³/a, davon
Kreis Heinsberg	Erkelenz	14	209.876 m³/a
		11	87.688 m ³ /a
	Gangelt Geilenkirchen		
		8	154.592 m³/a
	Heinsberg	37	92.260 m³/a
	Hückelhoven	17	83.281 m³/a
	Selfkant	35	180.820 m³/a
	Waldfeucht	15	107.233 m³/a
	Wassenberg	25	48.316 m ³ /a
	Wegberg	40	199.885 m³/a
Rhein-Sieg-Kreis			rmenge 2.318.983 m³/a, davon
	- Alfter	30	375.300 m³/a
	- Bornheim	58	1.037.375 m³/a
	- Eitorf	2	4.000 m³/a
	- Hennef	4	15.000 m³/a
	- Königswinter	1	7.884 m³/a
	- Meckenheim	13	85.040 m³/a
	- Much	1	63.100 m³/a
	- Neunkirchen-		
	Seelscheid	1	1.000 m³/a
	- Niederkassel	19	100.924 m³/a
	- Rheinbach	18	165.100 m ³ /a
	- Sankt Augustin	1	13.000 m³/a
	- Siegburg	1	200 m³/a
	- Swisttal	17	308.646 m³/a
	- Troisdorf	14	101.546 m³/a
	- Wachtberg	4	23.100 m³/a
	- Windeck	2	17.768 m³/a
Rhein-Erft-Kreis			menge 1.416.789 m³/a, davon
TATIONT ETTE TATOLO	Bedburg	1	20.000 m³/a
	Bergheim	4	314.000 m³/a
	Brühl	6	124.405 m³/a
	Erftstadt	2	37.620 m³/a
	Frechen	3	111.800 m³/a
	Hürth	6	116.650 m³/a
	Kerpen	8	206.870 m ³ /a
	•	o 17	
	Pulheim		191.690 m³/a
	Wesseling	9	293.754 m³/a

Bezirksregierung Münster

Stadt Bottrop	8 Anlagen, Ge	samtfö	rdermenge 140.411 m³/a
Stadt Gelsenkirchen	1 Anlage		
Stadt Münster	16 Anlagen, G	esamtf	ördermenge 64.418 m³/a
Kreis Warendorf	Gesamtförderr	nenge	420.000 m³/a
Kreis Steinfurt	122 Anlagen, 0	Gesam	tfördermenge 1.187.059 m³/a, davon
	Altenberge	3	27.821 m³/a
	Emsdetten	2	27.700 m ³ /a
	Greven	12	131.896 m³/a
	Hopsten	4	42.000 m³/a
	Hörstel	10	217.360 m³/a
	Horstmar	1	1.800 m³/a
	Ibbenbüren	2	37.500 m³/a
	Ladbergen	5	13.260 m³/a
	Laer	8	86.250 m³/a
	Lengerich	9	73.800 m³/a
	Lienen	8	62.262 m³/a
	Lotte	1	12.000 m³/a
	Metelen	1	9.000 m³/a
	Neuenkirchen	6	10.300 m³/a
	Ochtrup	3	15.450 m³/a
		12	88.260 m³/a
		14	121.250 m³/a
		10	103.660 m³/a
	Tecklenburg	3	12.800 m³/a
	Wettringen	8	92.690 m³/a
Kreis Coesfeld			ördermenge 514.961 m³/a, davon
	Ascheberg	7	32.947 m³/a
		17	95.382 m³/a
	Coesfeld	8	69.928 m³/a
		10	68.441 m³/a
	Havixbeck	2	3.354 m³/a
	Lüdinghausen		69.167 m³/a
	Nordkirchen	1	3.100 m³/a
	Nottuln	2 2	3.969 m ³ /a
	Olfen		6.056 m³/a 53.610 m³/a
	Rosendahl Senden	7 12	109.007 m³/a
Kreis Borken			tfördermenge 5.494.776 m³/a, davon
Kiels Dolkell	Ahaus	3	43.775 m ³ /a
		5 54	1.077.900 m³/a
		50	1.021.852 m³/a
	Gescher	4	88.100 m³/a
	Heek	1	30 m³/a
		72	1.149.950 m³/a
		16	188.371 m³/a
	Legden	2	5.500 m³/a
	Raesfeld	9	200.500 m³/a
		26	533.603 m³/a
		17	447.565 m³/a
	Schöppingen	2	17.500 m³/a
	Stadtlohn	7	75.750 m³/a
	Südlohn	8	153.905 m³/a
L	, J		

Velen	16	415.550 m³/a
Vreden	3	4.925 m³/a

51. Wie hat sich der Wasserverbrauch von 1990 bis 2013 in Landwirtschafts- und Gartenbaubetrieben entwickelt? Sieht die Landesregierung hier regionale Schwerpunkte und wenn ja, wodurch?

Auf die Antwort zur Frage 47 bis 49 wird hingewiesen.

Konkrete Zahlen, die eine abgesicherte Aussage zur Entwicklung des Wasserverbrauchs in der Landwirtschaft und im Gartenbau ermöglichen würden, liegen im Wesentlichen nicht vor.

Erfahrungsgemäß schwankt der Wasserverbrauch in der Landwirtschaft und Gartenbaubetrieben vermutlich vor allem witterungsbedingt recht stark.

Vor allem in der Landwirtschaft ist die Beregnung abhängig vom natürlichen Niederschlag, speziell in der Hauptwachstumsperiode im Frühjahr. Kulturen in Gewächshäusern oder Folientunneln sind dagegen ganzjährig von künstlicher Bewässerung abhängig.

Im Zuge des fortschreitenden Klimawandels hin zu trockeneren und auch wärmeren Frühjahren ist dann häufiger eine Beregnung der Freilandkulturen erforderlich. Auch die Tendenz im Sommer hin zu mehr Starkregenereignissen im Wechsel mit heißen Trockenperioden kann hier vermehrt eine Zusatzbewässerung erforderlich machen.

Diese Problematik zeigt sich am deutlichsten nördlich der Lippe, im Bereich der Haltener Sande auf Böden mit geringer Feldkapazität. Hier ist der Grundwasserstand in den letzten Jahren merklich gefallen, so dass dieser Bereich zukünftig bei der Beantragung neuer Wasserrechte, aber auch hinsichtlich der Überwachung bestehender Wasserrechte, intensiver betrachtet werden muss.

Neben den witterungsbedingten- bzw. klimatischen Einflüssen ist die Ausweitung der Produktion von bestimmten (vermehrt bewässerungsbedürftigen) Sonderkulturen wie z.B. Feldgemüse oder Beerenobst zu verzeichnen. Ebenso sind die Qualitätsanforderungen im Handel gestiegen, die ebenfalls Auswirkungen auf den Bewässerungsbedarf von Kulturen haben.

Dementsprechend scheint ein steigender Trend (zumindest gemessen an der Zahl der Anträge) in den entsprechenden Regionen erkennbar zu sein (z.B. Kreis Düren, Rhein-Erft-Kreis, Kreis Heinsberg, Rhein-Sieg-Kreis, Kreis Kleve, Kreis Recklinghausen, Kreis Gütersloh).

Die Landesregierung hat in verschiedenen Studien und Modellierungen die Auswirkungen des Klimawandels insbesondere auf die landwirtschaftliche Bewässerung untersuchen lassen. Aus den entsprechenden Ergebnissen ist die Notwendigkeit abzuleiten, künftig auf regionaler Ebene eine mengenmäßige Bewirtschaftung des Grundwassers zu prüfen.

2. Ökologischer Zustand - Chemische Güte der Oberflächengewässer

52. Gibt es Ergebnisse von Untersuchungen über das Vorkommen von Veterinärarzneimitteln in Gülle und über mögliche Eintragspfade dieser Mittel in Grund- und Oberflächenwässer?

Gülle und Gärreste

Das LANUV hat 2009 in einer Überblicksuntersuchung die Belastung von insgesamt 34 Gülle- und 35 Gärrestproben mit den mengenmäßig wichtigsten Veterinärantibiotika ermittelt.

Die Proben stammten aus Güllelagern in landwirtschaftlichen Betrieben und Gärrestlagern bei Biogasanlagen und wurden auf verschiedene Einzelsubstanzen der Stoffgruppen der Tetracycline, Sulfonamide und Fluorchinolone untersucht. In 71% aller untersuchten Proben waren Antibiotikarückstände nachweisbar (Gärrestproben 80%, Gülleproben 62%). Das nachgewiesene Stoffspektrum und die Höhe der Stoffkonzentrationen unterschieden sich teilweise. Tendenziell waren die Schweine- und Geflügelgülle stärker belastet als die Rindergülle. Bei den Gärresten gab es diese Tendenz nicht, u. a. weil viele Gärreste aus der Vergärung von Güllen verschiedener Tierarten stammten. Die Untersuchungsergebnisse belegen, dass Wirtschaftsdünger eine Quelle des Eintrags von Veterinärantibiotika in landwirtschaftlich genutzte Böden sind (Ratsak et al., 2013).

Boden und Grundwasser

Zur Erfassung des Gefährdungspotenzials von Tierarzneimittelrückständen auf landwirtschaftlich genutzten Böden und im Grundwasser in NRW hat das LANUV zudem im Jahr 2008 ein Boden- und Grundwasser-Screening an insgesamt 21 korrespondierenden Standorten in NRW durchgeführt.

Für dieses Programm wurden Flächen im Einzugsbereich von landeseigenen Grundwassermessstellen ausgewählt, die in Gebieten mit hohem Viehbesatz und teilweise hohen Aufwandmengen an Gülle liegen sowie einen geringen Grundwasserflurabstand aufweisen. An diesen Grundwassermessstellen waren bei früheren Untersuchungen zum Teil erhöhte Konzentrationen an Nitrat und Ammonium festgestellt worden. An jedem Standort wurden eine oberflächennahe Grundwasserprobe und Bodenproben aus den Tiefen 0 – 30 cm, 30 – 60 cm und 60 – 90 cm entnommen. Untersucht wurde auf die Rückstände der als umweltrelevant bewerteten Tierarzneimittelgruppen Tetracycline, Sulfonamide und Fluorchinolone mit insgesamt 22 Einzelstoffen.

Von den untersuchten 21 Grundwasserproben wies bei einer Bestimmungsgrenze (BG) von damals 0,05 μ g/L nur eine Probe Tierarzneimittelrückstände auf. Diese Probe enthielt einen Wirkstoff aus der Stoffgruppe der Sulfonamide, Sulfamethoxazol, mit einer Konzentration von rund 0,30 μ g/L. Bei einer zweiten Probennahme an dieser Grundwassermessstelle wurde eine Konzentration von 0,37 μ g/L festgestellt. Die Konzentrationen der übrigen Sulfonamide lagen unter der BG. Auf der korrespondierenden landwirtschaftlichen Fläche konnten im Boden weder Sulfamethoxazol noch andere Wirkstoffe aus der Gruppe der Sulfonamide nachgewiesen werden.

In den Oberbodenproben (Entnahmetiefe 0-30 cm) wurden bei einer BG von 5 μ g/kg TS weder Fluorchinolone noch Sulfonamide nachgewiesen. Jedoch wiesen 12 der 21 Proben Gehalte an Tetracyclinen über 5 μ g/kg TS auf. Die Maximalgehalte im Boden lagen bei 13,6 μ g/kg TS für Oxytetracyclin, 44,4 μ g/kg TS für Chlortetracyclin und 38,6 μ g/kg TS für Tetracyclin. Frachtabschätzungen legen den Schluss nahe, dass bei den Tetracyclinen eine Akkumulation im Boden stattfindet. Aufgrund der möglichen Anreicherung durch das wiederholte Ausbringen und wegen der Möglichkeit einer Induktion bzw. Verbreitung von Antibiotikare-

sistenzen wird der Eintrag von antibiotisch wirksamen Substanzen mit Gülle und Gärresten daher als kritisch beurteilt (Hembrock-Heger et al. 2011).

Eine bundesweite Studie zur Grundwasserbelastung durch Antibiotika und Antiparasitika, die veterinärmedizinisch eingesetzt werden bzw. in Tiermastanlagen Anwendung finden, wurde 2014 durch das UBA herausgegeben (UBA-Texte 27/2014). An dieser Studie war ebenfalls das LANUV beteiligt. Erneut wurden Grundwasserbelastungen an dem o.g. Standort in NRW mit Sulfamethoxazol im genannten Konzentrationsbereich gefunden und es bestätigte sich, dass Befunde im Grundwasser - bei sehr risikoorientierter Standortauswahl – vereinzelt vorkommen.

Oberflächengewässer

Verschiedene Tierarzneistoffe werden seitens des LANUV im Rahmen des Oberflächengewässermonitorings regelmäßig untersucht (Ergebnisse: www.elwasweb.nrw.de). In Oberflächengewässern sind verschiedene Stoffe aus der Gruppe der Sulfonamide nachweisbar (u.a. Sulfamethoxazol, Sulfadiazin, Sulfadimidin). Da Sulfamethoxazol in bedeutendem Umfang auch in der Humanmedizin eingesetzt wird, lassen sich die regelmäßig feststellbaren Befunde in Oberflächengewässern nicht auf den Einsatz in Tiermastbetrieben zurückführen. Regionalisierte Frachtabschätzungen (Stoffflussmodell; Messungen an Kläranlagen) ergeben, dass die Sulfamethoxazol-Belastungen der mittelgroßen und großen Oberflächengewässer in NRW sich durch Einträge aus kommunalen Kläranlagen erklären lassen. Insbesondere in kleineren Gewässern in ländlichen Gebieten mit hohem Viehbesatz sind dagegen auch gewässerrelevante Belastungen (Drainagen!) aus Gülle / Gärresten nicht auszuschließen.

53. In welchen Oberflächengewässern waren seit Inkrafttreten der Europäischen Wasserrahmenrichtlinie ein Anstieg der Nitrat-, Phosphat- und PSM-Konzentrationen zu verzeichnen?

Um den Anstieg von Stoff-Konzentrationen zuverlässig ermitteln zu können sind Messreihen über längere Zeiträume notwendig. Für eine statistisch abgesicherte Aussage müssen mindestens fünf Jahresmittelwerte vorliegen. Von operativen Messstellen, die nach Vorgaben der WRRL alle drei Jahre zu untersuchen sind, liegen bislang meist weniger als fünf Jahresmittelwerte vor. Eine statistisch abgesicherte Trendanalyse ist daher nur für die Messreihen der Überblicksmessstellen möglich, die bereits vor der Umstellung des Messstellennetzes nach Anforderungen der WRRL als sogenannte Trendmessstellen mehrmals jährlich beprobt wurden.

Eine flächendeckende Trendanalyse ist zum jetzigen Zeitpunkt noch nicht möglich.

Während für die beiden Nährstoffe Phosphat (bezogen auf Gesamtphosphat- Phosphor) und Nitrat (bezogen auf Nitrat-Stickstoff) weitgehend lückenlose und flächendeckende Datenreihen verfügbar sind, hat sich das Messprogramm für Pflanzenbehandlungs- und Schädlingsbekämpfungsmitteln PBSM im Verlauf der letzten 14 Jahre (von langjährigen äquidistanten Messzeitpunkten zu einem Messprogramm im Anwendungszeitraum) geändert und nicht von jeder der Überblicksmessstellen sind lückenlose Messreihen aller PBSM verfügbar. Bei der Bewertung der berechneten Medianwerte waren auch die Entwicklung der analyti-

Bei der Bewertung der berechneten Medianwerte waren auch die Entwicklung der analytischen BG und die präzisere Messtechnik zu berücksichtigen, die zu einer entscheidenden Verzerrung der Ergebnisse führen können.

Trendanalysen sind dadurch nur bedingt sinnvoll und die für PBSM ermittelten Ergebnisse sind daher mit Vorsicht zu interpretieren.

Für Nitrat liegen an allen 23 genannten Messstellen durchgängige Messwerte vor, die eine Trendanalyse der Jahres-Medianwerte erlauben. An keiner der Messstellen wurde ein signifikanter Anstieg der Konzentrationen festgestellt.

Im Rahmen der Nitratberichterstattung des Bundes (http://gis.uba.de/website/apps/nitrat/content/pdf/Nitratbericht-2012.pdf) wird methodisch anders vorgegangen und werden andere Zeiträume miteinander verglichen.

Bei dieser Vorgehensweise des UBA weisen drei NRW-Messstellen (Emscher-Mündung, Troisdorf-Brücke, Füchtelner Mühle) eine Zunahme der Nitratkonzentrationen auf.

Auf Basis der Vorgaben der Oberflächengewässerverordnung (OGewV) hinsichtlich Trenduntersuchungen ist für den Zeitraum 2000 bis 2012 aber bei diesen Messstellen kein signifikant positiver Trend festzustellen.

Ebenfalls konnten die Phosphat-Konzentrationen aller genannten Messstellen ausgewertet werden. Ein signifikanter Anstieg der Konzentration wurde lediglich für die Messstelle "Emscher-Mündung" (MST_ID 5009) berechnet und auch nach Prüfung der Daten als plausibel berechnet bewertet.

Für die berücksichtigten PBSM wurden häufig Konzentrationen unterhalb der BG festgestellt.

Aus der Gruppe der prioritären PBSM (Anlage 7 der OGewV) wurden in der Wasserphase insbesondere vier Stoffe wiederholt in Konzentrationen oberhalb der BG nachgewiesen: Atrazin, Simazin, Diuron und Isoproturon. Von diesen Stoffen hat aktuell nur Isoproturon eine Zulassung als PSM, die Zulassung von Atrazin endete in Deutschland im Jahr 1991, die von Simazin im Jahr 2000.

Die statistische Auswertung dieser Messwerte ergab jedoch lediglich für Isoproturon einen signifikant ansteigenden Trend in der Lutter, kurz vor der Mündung in die Ems (MST_ID 723502) sowie an der Messstelle "Emscher-Mündung" (MST_ID 5009).

Eine abschließende Prüfung der Daten insbesondere mit Blick auf die BG ergab, dass die Isoproturon-Konzentrationen an der Emscher nicht deutlich steigen, sondern vielmehr die Nachweis-Häufigkeit (bei konstanter BG), was zu einer Verschiebung des Medianes nach oben führt. Lückenlose Messdaten aus der Lutter liegen erst seit 2005 vor, wobei Isoproturon erstmals 2007 oberhalb der BG nachgewiesen wurde und seitdem sowohl in steigender Konzentration als auch mit steigender Nachweisehäufigkeit.

Von den 63 flussgebietsspezifischen PBSM (Anlage 5 der OGewV), wurde lediglich für Terbutylazin ein statistisch signifikanter und nach fachlicher Prüfung plausibler Konzentrationsanstieg an der Messstelle "Wesel" (Lippe-Mündung, MST-ID 6002) ermittelt.

54. Wie hoch ist die Belastung der Oberflächengewässer durch Dünger (gibt es regionale Unterschiede?)

Die Belastungen der Oberflächengewässer durch Nährstoffe aus Düngemitteln erfolgen über verschiedene Eintragspfade. Ein Teil der Nährstoffe wird nach der Aufbringung mit dem Sickerwasser in Dränagen oder Grundwasser transportiert. Auch eine Abschwemmung mit dem Oberflächenabfluss oder ein Austrag über die Erosion von Bodenpartikeln sind mögliche Pfade für Nährstoffeinträge in Oberflächengewässer.

Diese Prozesse sind von verschiedenen Faktoren, zum Beispiel Flächennutzung und Hangneigung, abhängig. Je nach Gebiet wirken sie sich daher unterschiedlich auf die Höhe des Stoffeintrags in die Gewässer aus. Eine flächendifferenzierte Messung der verschiedenen diffusen Einträge ist nicht möglich.

Die Höhe der Belastung der Oberflächengewässer durch Düngemittel kann daher nur mithilfe von flächendifferenzierten Abschätzungen ermittelt werden. Für diese werden Stoffeintragsmodelle, wie das Modell MONERIS, verwendet.

Dabei werden die vorgenannten diffusen Eintragspfade sowie atmosphärische Deposition und zusätzlich Punktquellen sowie Einträge über Kanalisationssysteme berücksichtigt.

Insgesamt belaufen sich die abgeschätzten Einträge über die Pfade Erosion, Grundwasser, Oberflächenabfluss und Dränagen NRW-weit auf ca. 60.000 t/a Stickstoff (68 % des Gesamteintrags) und 2.000 t/a Phosphor (47 % des Gesamteintrags) (Mittelwert der Jahre 2007-2011). Der Stickstoffeintrag vorwiegend aus landwirtschaftlichen Flächen erfolgt nach den Modellierungsergebnissen zu etwa 53 % des Gesamteintrags über den Grundwasserpfad. Weitere 9 % des Stickstoffs gelangen über Dränagen, 5 % über Oberflächenabfluss und nur 1 % über Erosion in die Gewässer. Bei Phosphor machen Oberflächenabfluss, Grundwasser und Erosion jeweils etwa 15 % und Dränagen nur etwa 2 % des Gesamteintrags aus.

Neben Einträgen aus Düngemitteln sind allerdings auch die atmosphärische Deposition auf landwirtschaftliche und natürlich bedeckte Flächen sowie Hintergrundbelastungen für einen Teil dieser Einträge verantwortlich zu machen.

Der allergrößte Teil des mit Düngemitteln aufgebrachten Stickstoffs wird über die Pflanzen mit der Ernte entzogen, der überschüssige Anteil kann u.a. über die genannten Eintragspfade in die Gewässer gelangen. Hohe Stickstoffüberschüsse finden sich vor allem im Nordwesten Nordrhein-Westfalens, besonders in den Kreisen Kleve und Borken.

Die auf Basis der Stoffeintragsmodellierung berechneten Nährstoffeinträge sind ebenfalls im Nordwesten NRWs, dem Einzugsgebiet der Issel und des Rheingraben-Nord sowie der Ruhr, besonders hoch. Auch die Phosphoreinträge sind im Einzugsgebiet der Issel hoch. Weitere Gebiete mit hohen Phosphoreinträgen sind NRW-weit verteilt, beispielsweise einzelne Gebiete im Einzugsgebiet der Ruhr oder der Werre.

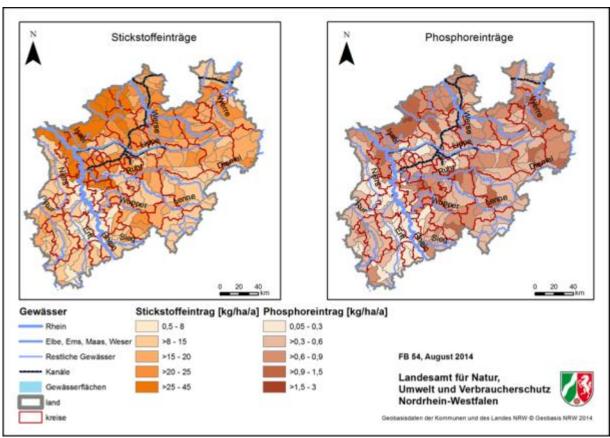


Abbildung 11: Stickstoff- und Phosphoreinträge in Oberflächengewässer NRWs durch Erosion, Oberflächenabfluss, Dränagen und Grundwasser pro Hektar, Mittelwerte der Jahre 2007-2011 berechnet aus Modellierungsergebnissen.

- 55. In welchem Umfang (wie vielen Fällen) wird die öffentliche Trinkwassergewinnung aus Grundwasser durch Rückstände von Pflanzenschutzmitteln verhindert oder beeinträchtigt?
- 56. Was unternimmt die Landesregierung in solchen Fällen und welche Vorsorge trifft sie, um solche Fälle zu vermeiden?

Im Trinkwasser sind in NRW keine Überschreitungen des Grenzwertes für PBSM festzustellen (Trinkwasserdaten 2012-2013; vgl. www.elwasweb.nrw.de).

Die Beeinträchtigungen der Wasserversorgung durch Rückstände aus PBSM sind aufgrund neuer Wirkstoffe und eines geänderten Bewusstseins in der Handhabung (weitgehender Verzicht auf Totalherbizide im kommunalen Bereich, intensive Aufklärung im Rahmen der Kooperationen Landwirtschaft/Wasserwirtschaft, der Beratung zur WRRL sowie der Beratung des Pflanzenschutzdienstes) rückläufig. Saisonale Beeinträchtigungen der Trinkwassergewinnung aus Oberflächengewässer (Ruhr und Rheinwasserwerke) gehören eher der Vergangenheit an. Neue, relevante PBSM-Kontaminationen aus Punktquellen im Grundwasserbereich werden ebenfalls seltener beobachtet.

Im Zeitraum 2010-2013 liegen in der Landesgrundwasserdatenbank (HygrisC) PBSM-Messwerte bezogen auf 178 Einzelstoffe für 1263 Rohwassermessstellen von Trinkwasser-

Einzugsgebieten vor. 158 dieser Rohwassermessstellen weisen einen Positivbefund auf (d.h., es liegt ein Messwert oberhalb der analytischen BG für mindestens einen PBSM-Einzelstoff vor). Diese Befunde verteilen sich auf ca. 14 verschiedene PBSM-Wirkstoffe einschließlich der relevanten Abbauprodukte. Die Höhe der Positivbefunde liegt zwischen >0,01 und 1,1 μg/l (höchster Wert bei Bentazon).

Hinzu kommen vereinzelte Befunde im Einzugsgebiet von Wassergewinnungsanlagen, die in den eigentlichen Entnahmebrunnen bislang nicht nachweisbar sind.

Da es sich in der weit überwiegenden Zahl der Funde um mittlerweile verbotene Stoffe bzw. deren Umsetzungsprodukte (Metabolite) handelt, sind diesbezüglich vorsorgende Maßnahmen weder möglich noch erforderlich.

Neuere Produkte unterliegen einem strengen Zulassungsregime unter strikter Beachtung wasserwirtschaftlicher Anforderungen. Ein flächenhafter Eintrag dieser Wirkstoffe ist bei sachgerechter Anwendung nicht zu besorgen. Die vorhandenen Befunde solcher PBSM sind im Wesentlichen auf Anwendungsfehler zurückzuführen.

Dem kann i.d.R. nur durch eine regelmäßige, intensive Beratung der Landwirte Rechnung getragen werden. Ein Hauptproblem stellt die Reinigung der eingesetzten Geräte und die Verhinderung von Einträgen über Hofabläufe dar. In der Beratung stehen daher die konsequente Reinigung auf dem Feld sowie der Einsatz moderner, selbstreinigender Gerätetechnik (kontinuierliche Innenreinigung) im Vordergrund.

Der Grenzwert für PBSM der Trinkwasserverordnung (TrinkwV) gilt nur für die sogenannten relevanten Metabolite. Für die sogenannten nicht relevanten Metabolite (nrM) existiert kein Grenzwert in der TrinkwV.

Dazu zählen die vereinzelt in Konzentrationen > 0,1 μ g/l (bis 1 μ g/l) im Trinkwasser in NRW im Zeitraum 2012-2013 gemessenen Stoffe:

- Chloridazon-desphenyl, Methyl-desphenyl-Chloridazon (Abbauprodukte des im Rübenanbau eingesetzten Herbizids Chloridazon),
- N,N-Dimethylsulfamid (Abbauprodukt des in der Vergangenheit in Erdbeerkulturen zugelassenen Tolylfluanid; Abbauprodukt des nach BiozidV für Baustoffe zugelassenen Biozidwirkstoffs Dichlofluanid),
- Metazachlor Metabolit: BH 479-8, Metazachlor Metabolit: BH 479-4 (Abbauprodukte des beim Anbau von Raps und Kohl eingesetzten Herbizids Metazachlor),
- S-Metolachlor Metabolit: CGA 351916, S-Metolachlor Metabolit: CGA 380168, S-Metolachlor Metabolit: CGA 5072, S-Metolachlor Metabolit: CGA 51202 (Abbauprodukte des im Maisanbau eingesetzten Herbizids Metolachlor)
- Dimethachlor Metabolit: CGA 369873 (Abbauprodukt des beim Anbau von Zuckerrüben und Raps eingesetzten Herbizids Dimethachlor).

Der gesundheitliche Orientierungswert (GOW) des UBA liegt für diese Stoffe stoffspezifisch zwischen 1 und 3 μ g/l. Für N-Nitroso-Dimethylamin (NDMA), welches mittels oxidativer Desinfektionsverfahren aus N,N-Dimethylsulfamid gebildet werden kann, liegt der GOW bei 0,01 μ g/l

(bewerteten_stoffe.pdf). Gesundheitlich relevante Konzentrationen sind im Trinkwasser somit nicht festzustellen.

Positivbefunde zu den nrM lagen an 321 Rohwassermessstellen vor. Hier reichen die Werte von >0,1 bis 9,9 µg/l (höchster Wert bei Desphenyl-Chloridazon).

Die Trinkwasserqualität wird durch entsprechende Maßnahmen bei der Trinkwasseraufbereitung sichergestellt. Konkrete Zahlen über Wasserwerke, die eine Aktivkohlefitration aufrechterhalten, um PBSM-Altschäden zu beseitigen bzw. um PBSM-Grenzwertüberschreitungen zu minimieren (vgl. § 6 TrinkwV "Chemische Anforderungen") liegen nicht vor, zumal eine entsprechende Aufbereitung auch aus anderen Gründen erforderlich sein kann.

Ferner haben eine Reihe von Wasserwerken die Förderung aufgrund von erhöhten Nitratkonzentrationen in tiefere Grundwasserstockwerke verlagert, wodurch auch eine Aufbereitung im Hinblick auf PBSM nicht mehr erforderlich ist.

Befunde nicht relevanter Metabolite verhindern oder beeinträchtigen die öffentliche Trinkwassergewinnung aus Grundwasser (im Sinne des Erfordernisses einer Aktivkohleanlage) nicht, da vorerst noch keine Aufbereitung aufgrund dieser Befunde erfolgte. Bisher wurden Maßnahmen im Einzugsgebiet ergriffen, wie Absprachen mit den Landwirten, bestimmte Pflanzenbehandlungsmittel nicht mehr einzusetzen. Da diese PBSM in Wasserschutzgebieten eingesetzt werden dürfen und alternative Mittel in der Regel teurer sind, werden die höheren Kosten vom Wasserwerksbetreiber getragen. Die Kosten für Analytik und Monitoring sind ebenfalls erheblich.

57. Wie viele Funde von Pflanzenschutzmittel-Rückständen im Grundwasser gab es in den Jahren 2010 bis 2013 und welcher Anteil davon ist auf landwirtschaftliche Anwendungen zurückzuführen (bitte Anzahl der Funde und Anteil positiver Messwerte angeben)?

Im Zeitraum 2010 bis 2013 liegen in der Landesgrundwasserdatenbank 5405 PBSM-Proben an insgesamt 2413 Grundwassermessstellen vor. An 356 dieser Messstellen (651 Proben) wurde ein PBSM-Befund oberhalb der analytischen BG (>BG) gemessen. Das entspricht jeder 7. Messstelle (ca. 14,8 %).

Welcher Anteil davon auf PBSM-Anwendungen auf landwirtschaftlichen Nutzflächen zurückzuführen ist, lässt sich nicht für jeden einzelnen Befund exakt zuordnen.

Grundsätzlich ist in der Landesgrundwasserdatenbank das Zustromgebiet der Messstellen hinsichtlich des jeweils vorherrschenden Landnutzungseinflusses unter Berücksichtigung der Filtertiefe gekennzeichnet. Unterschieden werden dabei die Hauptnutzungen Landwirtschaft (Acker+Grünland), Wald, Bebauung/Besiedlung/Verkehr und Sonstige, bzw. nicht näher spezifizierte Landnutzungen.

Tabelle A17 Selektiertes Datenkollektiv für Pflanzenschutzmittel-Rückständen im Grundwasser 2010 -2013 mit Anzahl der Proben und Messstellen

Selektiertes Datenkollektiv	PBSM	
Anzahl der untersuchten Proben in 2010 bis 2013, gesamt	5405	
davon: Proben in 2010 bis 2013 an Messstellen mit		
einer Hauptnutzungsbeeinflussung durch Landwirtschaft		
Anzahl der untersuchten Messstellen in 2010-2013, gesamt		
(ohne Differenzierung nach einer Nutzungsbeeinflussung)		
davon: Anzahl der untersuchten Messstellen mit Hauptnutzungsbeeinflussung durch Landwirtschaft		
davon: Anzahl der landwirtschaftlich beeinflussten Messstellen mit positivem Befund, d.h. mindestens ein Messwert größer Bestimmungsgrenze	163	

An insgesamt 1064 Messstellen mit Landnutzungseinfluss "Landwirtschaft" wurden im genannten Zeitraum 2395 Proben auf PBSM untersucht. Davon weisen 163 Messstellen (15,3%) einen Positivbefund oberhalb der BG (>BG) auf. Der Anteil der Positivbefunde ist somit bei den Messstellen mit Landnutzungseinfluss "Landwirtschaft" geringfügig höher als im Gesamtdatenbestand.

Informationen zu den untersuchten PBSM-Wirkstoffen und der Höhe und Häufigkeit der Befunde finden sich in Tabelle B14 im Anhang.

58. In welchem Umfang tragen Funde von Pflanzenschutzmitteln in Grund- und Oberflächengewässern dazu bei, dass die Ziele der Wasserrahmenrichtlinie in Nordrhein-Westfalen nicht erreicht werden?

Grundwasser

Von insgesamt 275 Grundwasserkörpern (GWK) in Nordrhein-Westfalen sind im aktuellen Monitoringzyklus (2007-2012), welcher dem Bewirtschaftungsplan 2015 zugrunde liegt, derzeit 16 GWK aufgrund von PBSM-Belastungen im "schlechten Zustand" und verfehlen deshalb das Ziel der Wasserrahmenrichtlinie. Umgerechnet auf die Landesfläche entspricht dies einem Flächenanteil von knapp 12%. Relevante Wirkstoffe mit Überschreitungen des Grundwasserschwellenwertes in unterschiedlichen GWK im genannten Monitoringzeitraum sind u.a.

- Atrazin (14 GWK) und Atrazin-Metaboliten
- Bentazon (11 GWK)

- Bromacil (10 GWK)
- *Diuron*, Isoproturon (je 7 GWK)
- Ethidimuron (5 GWK)
- Chloridazon, Methabenzthiazuron, Simazin (je 4 GWK)
- Ethofumesat, Desethylterbutylazin (je 3 GWK)
- MCPA, Metazachlor, Metamitron, Metribuzin (je 2 GWK)
- Sowie diverse weitere PBSM-Wirkstoffe (je 1 GWK)

Aus dieser Aufzählung der aktuell im Grundwasser relevanten PBSM ist ersichtlich, dass bereits nicht mehr in der Landwirtschaft eingesetzte Altstoffe an der gesamten Überschreitungshäufigkeit im Grundwasser noch immer einen wesentlichen Anteil haben.

Dabei führt gemäß der Grundwasserverordnung (GrwV 2010) nicht jede Überschreitung an einer Messstelle zu einer Zielverfehlung. Eine Zielverfehlung wird nur dann unterstellt, wenn die Kriterien gemäß § 7 GrwV erfüllt sind (z.B.: mindestens ein Drittel der Fläche des GWK ist betroffen). Kursiv gekennzeichnete Wirkstoffe sind nicht mehr zugelassen.

Oberflächengewässer

Die Oberflächengewässer in Nordrhein-Westfalen sind für die Bewirtschaftung in insgesamt 1727 Oberflächenwasserkörper (OFWK) unterteilt. Davon wurden im 2. Monitoringzyklus gemäß WRRL 979 auf PBSM untersucht. Diese Untersuchungen haben in insgesamt 140 OFWK Überschreitungen der Umweltqualitätsnorm (PBSM der Anlage 5 und 7 der OGewV) bzw. der Orientierungswerte (nicht gesetzlich verbindlich geregelte PBSM) von PBSM gezeigt; dabei konnten oftmals Überschreitungen von mehreren Stoffen gleichzeitig nachgewiesen werden. In diesen OFWK sind demnach diese Stoffe mitverantwortlich für das Nichterreichen des guten ökologischen Zustands bzw. des guten ökologischen Potentials, welches die Ziele der WRRL sind.

Einige Stoffe waren bei den Untersuchungen besonders auffällig, darunter fallen MCPA, Mecoprop und Chloridazon (PBSM der Anlage 5), Isoproturon und Diuron (PBSM der Anlage 7) sowie Glyphosat, Flufenacet und Boscalid (nicht gesetzlich verbindlich geregelte PBSM).

59. Was unternimmt die Landesregierung, um in solchen Fällen die Ziele der Wasserrahmenrichtlinie künftig zu erreichen?

Hinsichtlich der Maßnahmen im Bereich von Trinkwasserschutzkooperationen wird auf die Antwort zu Fragen 55 und 56 hingewiesen.

Dort ist bereits ausgeführt, dass die meisten Probleme im Bereich des Grundwasserschutzes mit mittlerweile verbotenen Stoffen bzw. deren Umsetzungsprodukten bestehen und bezüglich dieser Stoffe im Grundsatz keine Handlungsmöglichkeiten bestehen. Zentraler Ansatzpunkt zur Verhinderung weiterer Einträge sind einerseits die bundesweit verschärften Anforderungen an den Sachkundenachweis für den Einsatz von PSM und andererseits eine regelmäßige, intensive Beratung der Anwender um Anwendungsfehler bzw. Einträge in Hofabläufe zu verhindern.

Im Rahmen der aktuellen Bewirtschaftungsplanung werden neben der Ursachenklärung im Einzelfall auch die erforderlichen Einzelmaßnahmen festgelegt. Diese konzentrieren sich insbesondere auf die Reduzierung der Einträge in Oberflächengewässer.

Neben der allgemeinen Beratung stehen dabei im Vordergrund:

- Umstellung auf ökologischen Landbau
- Unbehandelter Randstreifen zum Gewässer.
- Einsatz innovativer Gerätetechnik (Befüllung, Abdriftminimierung, Reinigung, Randbehandlung).
 Eine entsprechende Gerätetechnik (kontinuierliche Innenreinigung, abdriftmindernde Düsentechnik, Teilbreiten-/Einzeldüsenabschaltung) steht zur Verfügung.
- Gewässerschonende Entsorgung der Restmengen und Behälter.
- Minderung des oberflächigen Wasserabflusses und der Sedimentverlagerung durch konservierende Bodenbearbeitungsverfahren.
- Etablierung gewässerverträglicher Anbauverfahren (Anwendungsbestimmungen/technik, Wirkstoffmanagement, Fruchtfolge- und Anbauplanung).
- Minderung der PSM-Anwendung in Gewässernähe durch die Umwandlung der ackerbaulichen Nutzung in Grünlandnutzung oder begrünte Randstreifen.

Es bestehen Fördermöglichkeiten aus dem Uferrandstreifenprogramm. Darüber hinaus wirbt die Landesregierung dafür, den Verpflichtungen des Greenings durch die Anlage von Uferrandstreifen nachzukommen.

Ergänzend ist darauf hinzuweisen, dass nicht alle gefundenen Stoffe (vgl. Antwort zur Frage 55) aus der landwirtschaftlichen Anwendung stammen.

So erfolgt beispielsweise bei Diuron und Glyphosat der Eintrag überwiegend über die kommunalen Kläranlagen.

In Deutschland gibt es derzeit für Diuron als Wirkstoff in PSM keine Zulassung. Damit ist die Verwendung als Herbizid im landwirtschaftlichen Bereich nicht mehr erlaubt. Im privaten Bereich wird der Stoff z.B. durch Auswaschungen aus Fassadenoberflächen und über Regenabflüsse eingetragen.

Im Rahmen des derzeit in Aufstellung befindlichen WRRL-Maßnahmenprogramms werden diesbezüglich weitere Maßnahmen geprüft und festgelegt. Es ist auch zu prüfen, ob durch eine Verbreiterung des gesetzlichen Randstreifens und weitere gesetzliche Verbote die Zielerreichung relevant verbessert werden kann.

60. Gibt es Regionen, in denen es besonders häufig zu Funden von Pflanzenschutzmitteln aus landwirtschaftlicher Anwendung in Oberflächengewässern kommt und was unternimmt die Landesregierung, um dort Abhilfe zu schaffen?

Die Ergebnisse des Gewässermonitorings des 2. Monitoringzyklus gemäß WRRL bzw. OGewV zeigen, dass es regionale Unterschiede bezüglich der Belastung durch PBSM der Anlage 7 und 5 der OGewVsowie der nicht gesetzlich verbindlich geregelte PBSM gibt.

So ist beispielsweise das Einzugsgebiet der Erft sowohl durch PBSM der Anlage 7 (14% der gesamten OFWK), 5 (50% der gesamten OFWK) als auch durch gesetzlich nicht verbindlich geregelte PBSM (18% der OFWK) belastet. Auch in anderen Einzugsgebieten (z.B. Weser) wurden vermehrt PBSM nachgewiesen, während in anderen Einzugsgebieten (z.B. Ahr) keine PBSM nachgewiesen werden konnte. Hierbei ist allerdings immer der Anteil der überhaupt auf PBSM untersuchten OFWK mit zu berücksichtigten.

Über das in Frage 59 aufgezeigte Handlungsprogramm der Landesregierung hinaus verfolgen aktuell zwei Modellprojekte des MKULNV das Ziel, Belastungen von Oberflächengewässern durch PSM gezielt zu verringern. In Zusammenarbeit mit dem JKI werden im Projekt "Hot-spot-Management NRW" besonders eintragsgefährdete Gewässerabschnitte modellgestützt ermittelt und mit Hilfe der Beratung einer Kooperation "Landwirtschaft / Wasserwirtschaft" wirksame und praktikable Minderungsmaßnahmen entwickelt, überprüft und in die Praxis umgesetzt. Mit Hilfe der Ergebnisse des Projektes soll die Wasserschutzberatung künftig in die Lage versetzt werden, potenzielle PSM-Einträge deutlich gezielter zu ermitteln und die Wirksamkeit von Minderungsmaßnahmen vorab konkret abzuschätzen. In einem weiteren Projekt in einer Kooperation am Niederrhein wird ermittelt, welche Gefährdungspotentiale aus dem Dränwasserabfluss gartenbaulich genutzter Flächen resultieren und welche Möglichkeiten zur Reduzierung speziell errichtete Versickerungsmulden bieten.

An dieser Stelle ist außerdem darauf hinzuweisen, dass die untersuchten PBSM nicht ausschließlich aus landwirtschaftlicher Anwendung stammen. Einige werden auch über kommunales Abwasser in Oberflächengewässer eingetragen, da sie auch im privaten (Haus und Garten), kommunalen und gewerblichen (Grünflächen, Nichtkulturland) Bereich Anwendung finden (z.B. Glyphosat, Diuron) oder z.B. in Fassadenanstrichen (Diuron), wodurch Einträge auch über Mischwassereinleitungen möglich sind.

Zum Handlungsprogramm der Landesregierung wird auf die Antwort zur Frage 59 verwiesen.

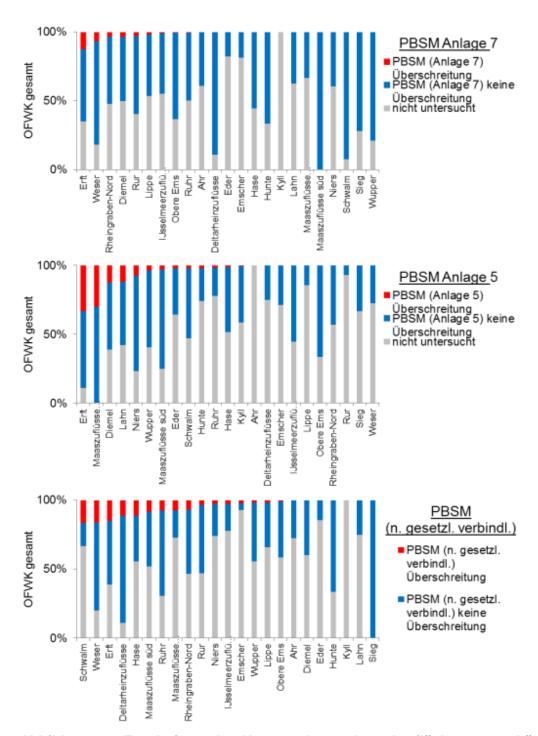


Abbildung 12: Ergebnisse der Untersuchung der Oberflächenwasserkörper (OFWK) auf Pflanzenbehandlungs- und Schädlingsbekämpfungsmittel (PBSM) im 2. Monitoringzyklus gemäß der Europäischen Wasserrahmenrichtlinie. Dargestellt ist die Anzahl der Oberflächenwasserkörper in den einzelnen Teileinzugsgebieten von NRW, sowie deren Anteil der auf PBSM untersucht wurde, deren Anteil in dem Überschreitungen bzw. keine Überschreitungen der Umweltqualitätsnomen (Anlage 7 und 5) bzw. Orientierungswert (nicht gesetzlich verbindlich geregelt) festgestellt wurden.

61. Welche Auswirkungen haben die ermittelten Pflanzenschutzmittel-Rückstände in Oberflächengewässern auf die Trinkwasserversorgung und auf die Biozönose der Gewässer?

Auswirkungen auf die Trinkwasserversorgung

In Nordrhein-Westfalen wurde aus Vorsorgegesichtspunkten ein gesondertes Überwachungsprogramm mit trinkwasserspezifischen Zielwerten zur Bewertung für die trinkwasserrelevanten Oberflächengewässer aufgestellt, da die OGewV Anforderungen in Anlage 5 und 7 alleine unter ökologischen Gesichtspunkten setzt und die Anforderungen in der OGewV an Substanzen wie für Pflanzenschutzmittel und –Rückstände in Oberflächengewässern sowie für andere trinkwasserrelevante Stoffe daher keine Relevanz für die Trinkwasserversorgung haben. Hierfür wird allgemein der Trinkwasser-Grenzwert von 0,1 µg/l herangezogen.

Zur Beurteilung von möglichen Belastungen von Gewässern, die zur Trinkwasserversorgung dienen, wurden insgesamt 85 sogenannte "Bezugsmessstellen" in Gewässerabschnitten im Bereich von rund 135 Trinkwasserwerken, bei denen Wasser aus Oberflächengewässern mittels Direktentnahme oder mittels Uferfiltration gewonnen wird, festgelegt. Die Messstellen werden regelmäßig im Hinblick auf potenziell trinkwasserrelevante Stoffe untersucht. Dazu zählen auch PBSM und PBSM-Rückstände.

Aktuelle Ergebnisse für Oberflächengewässer (www.elwasweb.nrw.de)

- Im zweiten Quartal 2014 wurden Glyphosat an 3 Messstellen (3 MST) und Isoproturon (1 MST) mit Werten >0,1 μg/l festgestellt. Im ersten Quartal 2014 wurden Glyphosat, Isoproturon und Metolachlor-SA an je einer Messstelle über dem genannten Schwellenwert detektiert.
- Im Jahr 2013 wurden Überschreitungen an Bezugsmessstellen zu Trinkwassergewinnungsanlagen bei folgenden PBSM festgestellt:
 - Terbutylazin (3 MST)
 - Metamitron (2 MST)
 - Metolachlor (2 MST)
 - Dimethenamid, Desethylterbutylazin, Quinmerac, MCPA, Propyzamid, Glyphosat, Metolachlor-SA (je 1 MST)

Wie in der Antwort zu Fragen 55 und 56 bereits ausgeführt liegen jedoch aufgrund der Trinkwasseraufbereitung keine Überschreitungen der Zielwerte im Trinkwasser vor.

Auswirkungen auf die Biozönose

PSM werden entsprechend ihrer organismengruppenspezifischen Wirkung in die Kategorien Herbizide, Insektizide und Fungizide eingeteilt. Entsprechend wirken sie beim Eintrag in Oberflächengewässer ebenfalls auf die dortige Biozönose und können einen Einfluss auf die biologischen Qualitätskomponenten, die gemäß OgewV hinsichtlich des guten ökologischen Zustands bzw. des guten ökologischen Potentials untersucht werden, haben.

Der Eintrag von PSM kann mitverantwortlich dafür sein, dass eine Biozönose verarmt. Außerdem kann es zu einer sogenannten Verschiebung der Artenzusammensetzung kommen, das heißt, dass besonders sensitive Arten durch bestimmte stoffliche Belastungen verdrängt werden, während tolerantere Arten in ihrer Abundanz zunehmen. Beides kann dazu beitragen, dass die dem Leitbild entsprechende Artenzusammenzusammensetzung nicht mehr gegeben ist und somit der gute ökologische Zustand bzw. das gute ökologische Potential nicht erreicht wird.

Allerdings ist es aufgrund der Komplexität der Interaktionen im Gewässer zwischen Gewässerstruktur, -chemismus und -biozönose außerordentlich schwer, für bestimmte festgestellte Defizite eine Kausalität nur zu einem speziell im Gewässer nachgewiesen Wirkstoff herzustellen. Dies ist Gegenstand vielfältiger Forschung.

3. Stickstoffeinträge in Gewässer

- 62. Wie viele Grundwasser-Brunnen zur Trinkwassergewinnung mussten aufgrund von Schadstoffeinträgen aus der Landwirtschaft in NRW in den letzten 12 Jahren geschlossen werden(Aufstellung nach privaten und öffentlichen Brunnen mit jeweiliger Begründung der Schließung)?
 - Wo lagen die Brunnen?
 - Welche Schadstoffe wurden in diesem Zusammenhang jeweils festgestellt?
 Aufstellung nach Besitzer der Brunnen, Art und Landkreisen.
 - Welche Gegenmaßnahmen wurden ergriffen?
 - Wie hoch war die Anzahl der erteilten Ausnahmegenehmigungen (§9 TrinkwV- Abweichen vom Grenzwert) bei privaten Brunnen in den letzten 12 Jahren?

Wie wird überwacht?

Welche Grenzwerte werden den Ausnahmen zugrunde gelegt?

Für die Schließung von Brunnen zur Trinkwassernutzung können verschiedene Gründe ausschlaggebend sein. Neben der Einhaltung der relevanten Grenzwerte, können auch der (hygienische) Zustand, die Anschlussmöglichkeit an die öffentliche Trinkwasserversorgung oder die Zumutbarkeit von Aufbereitungstechnologien Gründe für die Stilllegung von Brunnen sein.

Gründe für die Außerbetriebnahme privater Wassergewinnungsanlagen sind ferner mangelnde Bausubstanz, fehlende Entsprechungen mit den allgemein anerkannten Regeln der Technik (a.a.R.d.T.), Investitionsstau und oder unmittelbare Gefährdung durch eindringendes Oberflächenwasser.

Ob eine Stilllegung auf Schadstoffeinträge aus der Landwirtschaft oder dem Gartenbau zurückzuführen ist oder beispielsweise ein Brunnenersatz (Tiefbrunnen) aus anderen Gründen erfolgte, kann demgemäß nicht beurteilt werden.

Von den Gesundheitsämtern wurden folgende Brunnenschließungen berichtet:

- Brunnen in Bestwig-Ostwig der Hochsauerlandwasser GmbH aufgrund von Belastung mit perfluorierten Tensiden (PFT)
- Brunnen Burhagen der SW Brilon mehrfach wegen Keimeinträgen;
- Schachtbrunnen in Oberschlehdorn und Sickerstrang Orketal WW Stadt Medebach wegen Keimeintrag,
- Olsberg-Elpe zwei Eigenversorgungsbrunnen wegen PFT
- Bad Berleburg Arfeld Schachtbrunnen (private Trinkwasserkleinanlage) wegen Nitrat
 durch Tiefbrunnen ersetzt
- 74 Hausbrunnen im Umkreis Geseke im Wesentlichen am Fuß des Haarstrangs wegen Nitrat

- 3 (nicht förmliche) Schließungen in Rahden
- ca. 2000 (nicht förmliche) Schließungen im Außenbereich des Kreises Gütersloh aufgrund des Anschlusses an die öffentliche Wasserversorgung (Nitratbelastung)
- 1 öffentlicher Brunnen im Kreis Heinsberg wegen Metaboliten des Chloridazon
- 1 Brunnen in Gelsenkirchen durch neuen ersetzt

Bei Überschreitungen des Nitratgehaltes bestehen verschiedene Sanierungsmöglichkeiten der Anlagen. Durch Abdichtung oder Neuverrohrung (Brunnensanierung) sowie den Einbau einer Nitratreduzierungsanlage ist es möglich, den vorgeschriebenen Grenzwert für Nitrat einzuhalten. In Einzelfällen kann ein Anschluss an das öffentliche Trinkwassernetz erfolgen.

Das UBA hat in Zusammenarbeit mit weiteren Institutionen als Handlungsempfehlung "Leitlinien zum Vollzug der §§ 9 und 10 der Trinkwasserverordnung" erarbeitet.

Die Leitlinien sind als Vollzugshilfe für die, für die Durchführung der TrinkwV 2001 zuständigen Behörden gedacht und bieten wertvolle Anhaltspunkte und Hilfestellungen für das Vorgehen der für den Vollzug der TrinkwV 2001 zuständigen Behörden, entbinden diese jedoch nicht von der Ermessensausübung.

Der Begriff "Ausnahmegenehmigung" kommt in der TrinkwV so nicht vor, die TrinkwV spricht von der "Duldung" für Indikatorparameter nach § 9 und die "Zulassung einer Abweichung vom Grenzwert" für die Parameter der Anlage 2.

Von den Gesundheitsämtern wurden insgesamt über 500 "Ausnahmegenehmigungen" erteilt.

Dabei werden in der Regel die Empfehlungen des Bundesministeriums für Gesundheit (BMG) / UBA zu tolerierbaren Nitratgehalten in Höhe von maximal 130 mg/l zu Grunde gelegt.

Die Duldung bzw. Zulassung ist an verschiedene Nebenbestimmungen gebunden.

- Die Verwendung für Säuglingsnahrung ist auszuschließen.
- Die Verbraucher werden über die Risiken einer Nitratbelastung und bestehende Nutzungsbeschränkungen schriftlich informiert.
- Die Nutzung des Wassers zu Trink- und Speisezubereitungen darf ausschließlich für Erwachsene erfolgen; auf eine nitratreduzierte Ernährung und auf eine ausreichende Jodid- Zufuhr ist zu achten; für Säuglinge und Kleinkinder darf der Nitratgehalt 50 mg/l nicht überschreiten
- Die Duldung wird maximal auf 3 Jahre befristet.
- Gefordert werden ebenfalls j\u00e4hrliche Kontrollen des Nitratgehaltes.

Seit einigen Jahren verfolgt das MKULNV gemeinsam mit den Gesundheitsämtern die Linie, den zulässigen Höchstwert auf 90 mg/l zu senken. Aus diesem Grunde ist die Anzahl der erteilten Duldungen oder Zulassungen in den vergangenen Jahren kontinuierlich zurückgegangen.

Zur Überwachung werden Ortsbegehungen durchgeführt und ist eine regelmäßige Untersuchung durch die Betreiber erforderlich.

Die TrinkwV misst den Kleinanlagen eine hohe Bedeutung hinsichtlich des vorbeugenden Gesundheitsschutzes der Verbraucherinnen und Verbraucher bei. Die unteren Gesundheitsbehörden sind verpflichtet, die Kleinanlagen in regelmäßigen Abständen zu überprüfen. Die Prüfungen im Rahmen der behördlichen Überwachung gemäß § 19 umfassen neben der Entnahme und Untersuchung von Wasserproben auch die Besichtigung der Wasserversorgungsanlage einschl. Umgebung, soweit sie für die Wassergewinnung von Bedeutung ist.

Entsprechend den Vorgaben der TrinkwV werden einmal jährlich physikalische und mikrobiologische Untersuchungen mit zusätzlich dem Parameter Nitrat und einmal in 3 Jahren eine physikalisch- chemische und mikrobiologische Untersuchung u.a. des Parameters Ammonium des Trinkwassers dieser Anlage analysiert.

Bei Grenzwertüberschreitungen, die in der Regel ausschließlich bei privaten Brunnen (Eigenund Einzelwasserversorgungsanlagen) auftreten, werden die gesundheitlichen Bewertungen im Einzelfall vorgenommen.

Als Grundlage für die Höhe und den Zeitraum der zugelassenen Konzentrationen der Trinkwasserparameter, welche den Grenzwert der TrinkwV 2001 überschreiten, werden die aktuellen wissenschaftlichen Studien und Veröffentlichungen, sowie die Empfehlungen des UBA sowie die Leitlinien zum Vollzug der §§ 9 und 10 der TrinkwV 2001 herangezogen.

Des Weiteren wird den Betreibern der auffälligen Brunnen zur Sanierung der Anlagen geraten. Dies kann in verschiedenster Weise erfolgen:

- Niederbringen eines Bohrbrunnens (zur Förderung aus tieferen Grundwasserstockwerken)
- Einbau von Aufbereitungstechnik (z.B. Ionentauscher, Umkehrosmose)
- Anschluss an das zentrale Trinkwassernetz

63. Wie hat sich die Nitratbelastung des Grundwassers in den einzelnen Landkreisen in den Jahren 1990 bis 2013 verändert?

In Gebieten im Norden und Westen des Landes sind hohe Nitratkonzentrationen und teilweise steigenden Konzentrationen im Grundwasser festzustellen.

Regionale Belastungsschwerpunkte mit teilweise sehr hohen lokalen Nitratkonzentrationen mit Spitzenwerten >180 mg/L unter Ackerland-Einfluss bestehen nach wie vor in Teilen der Regierungsbezirke Düsseldorf, Münster, Köln und Detmold (Landkreisen Kleve, Neuss, Viersen, Wesel, Düren, Heinsberg, Rhein-Sieg-Kreis, Coesfeld, Steinfurt, Bielefeld, Gütersloh, Minden-Lübbecke, Paderborn).

Eine signifikante Zunahme der Überschreitungshäufigkeit über die Zeitreihe 1992 bis 2011 besteht in den Landkreisen Düren und Rhein-Erft-Kreis. Signifikante Abnahmen der Überschreitungshäufigkeit bei den landwirtschaftlich beeinflussten Messstellen sind lediglich in den Landkreisen Wesel und Heinsberg zu nennen, wobei die Messstellen im Landkreis Heinsberg bei näherer Betrachtung im Einflussbereich von Infiltrationsbrunnen (Sümpfungswasser, Garzweiler II) und damit einer Verdünnung der Nitratkonzentration unterliegen.

Zur detaillierten Darstellung auf Ebene der Landkreise wird auf den kürzlich veröffentlichten Nitratbericht des Landes (LANUV-Fachbericht 55 "Nitrat im Grundwasser von NRW - Aktuel-

le Situation 2010-2013 und Entwicklung von 1992-2011" (http://www.lanuv.nrw.de/veroeffentlichungen/publ_start.htm) verwiesen.

64. In wie vielen Messstellen und in welchen wurde die Konzentration von 50 Milligramm pro Liter Nitrat 2013 bzw. bei der letzten Messung überschritten?

Für die Beantwortung dieser Frage wurden alle in der Landesgrundwasserdatenbank HygrisC gespeicherten Nitratwerte an Grund- und Rohwassermessstellen ab 2013 (Stichtag der Datenauswertung: 14.08.2014) ausgewertet.

Aus den 3.646 im genannten Zeitraum auf Nitrat untersuchten Messstellen sind in der Tabelle B15 des Anhangs (Messstellen mit Maximalwert Nitrat >50 mg/L im Zeitraum 2013-2014) alle 513 Messstellen (entspricht jeder 7. Messstelle) aufgelistet, bei denen die Konzentration von 11,3 mg/L NO3-N, bzw. 50 Milligramm Nitrat pro Liter in mindestens einer Grundwasserprobe überschritten ist.

Bei der Befundauswertung sind auch 23 Messstellen der tieferen Grundwasserstockwerke (2. oder 3. Stockwerk) und 29 Emittentenmessstellen von speziellen, lokalen Schadensfall-Untersuchungen mit entsprechendem Befund enthalten, die bei den Häufigkeitsdarstellungen (Kartendarstellungen und Werteverteilungen pro Regionaleinheit) üblicherweise nicht berücksichtigt werden, da sie für die Beschreibung der Nitratbelastung des oberflächennahen Grundwassers nicht repräsentativ sind.

65. Wo liegen in NRW die Schwerpunkte von Nitratbelastungen im Grundwasser? Kartografische Darstellung.

Die Verteilung der aktuellen Nitratkonzentration an den Grund- und Rohwassermessstellen des oberen Grundwasserleiters (jeweils letzter Messwert ab 2013) ist in der nachfolgenden Abb. 13 dargestellt.

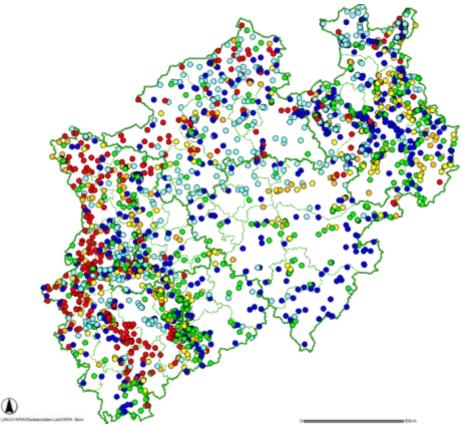


Abbildung 13: Aktuelle Nitratkonzentration der Grund- und Rohwassermessstellen im oberen Grundwasserleiter ab 2013 bis heute (Stand der Datenabfrage: 14.08.2014; Quelle: Landesgrundwasserdatenbank HygrisC). Ausgewertet wurde der jeweils letzte Nitrat-Messwert pro Messtelle. <u>Legende</u>: rot: Messwert > 50 mg/L, orange: >37,5 mg/L, gelb: >25 mg/L, grün: >12,5 mg/L, dunkelblau: >BG, hellblau: <BG.

Die Ergebnisse der aktuellen WRRL-Zustandsbewertung im Hinblick auf Nitrat sind in nachfolgender Abb. 14 dargestellt:

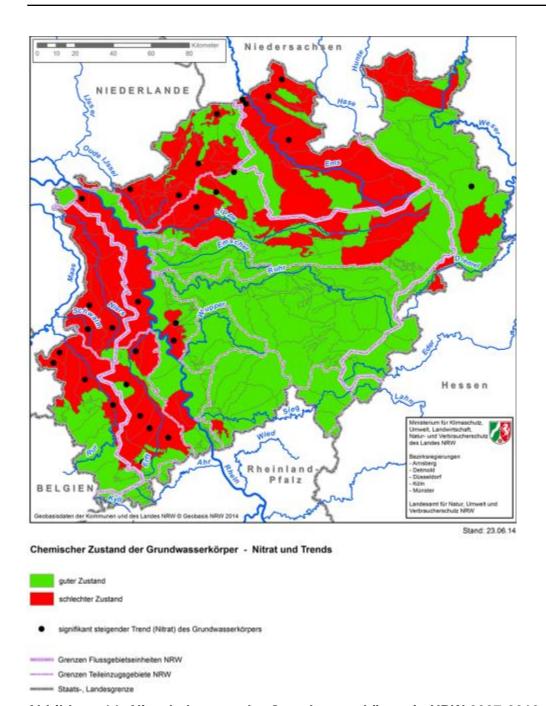


Abbildung 14: Nitratbelastung der Grundwasserkörper in NRW 2007-2012.

- 66. Welche Ansätze und Maßnahmen sind ergriffen, um den Nitratgehalt des Grund-, Oberflächen – und Trinkwassers zu senken?
- 67. Welche weiteren Maßnahmen werden zur Senkung der Nitratbelastung ergriffen?

Hinsichtlich der grundlegenden Maßnahmen zur Senkung der Nitratbelastung, wie notwendige Rechtsänderungen und Vollzugsoptimierung, wird auf die Antworten zu den Fragen 116 und 119 bis 121 hingewiesen.

Das Land NRW überarbeitet derzeit den Bewirtschaftungsplan und das zugehörige Maßnahmenprogramm gemäß WRRL. Der Bewirtschaftungsplan wird im kommenden Jahr in die Öffentlichkeitsbeteiligung gegeben.

In diesem Zuge werden u.a. konzeptionelle Maßnahmen wie beispielsweise die landwirtschaftliche WRRL-Beratung bzw. die korrespondierende Beratung in Trinkwasserschutzkooperationen festgelegt.

Bei der landwirtschaftlichen WRRL-Beratung handelt es sich um eine staatliche Aufgabe, mit deren Wahrnehmung der DLWK beauftragt wurde. In diesem Rahmen finden Grund-, Regional- und Intensivberatungen der landwirtschaftlichen und gartenbaulichen Betriebe statt. Zusätzlich werden aktuell Modellbetriebe in verschiedenen Regionen und in verschiedenen Bewirtschaftungsformen eingerichtet, bei denen u.a. die Möglichkeiten einer gewässerschonenden Landbewirtschaftung demonstriert werden sollen.

Daneben werden im Maßnahmenprogramm die im Landwirtschaftsbereich erforderlichen Einzelmaßnahmen festgelegt. Hierbei stehen im Vordergrund:

- Umstellung auf ökologischen Landbau
- Anlage von Gewässerschonstreifen mit ausreichender Breite, ohne ackerbauliche Nutzung und ohne Düngung.
- Ableitung des innerbetrieblichen N\u00e4hrstoffeinsparpotenzials einschl. N-\u00dcberhangsbewertung als Grundlage zur Bedarfsermittlung und D\u00fcngeplanung.
- Schlagbezogene N-Bedarfsermittlung auf Grundlage der N_{min}-Untersuchung (verfügbarer mineralisierter Stickstoff).
- Minderung des oberflächigen Wasserabflusses und der Sedimentverlagerung durch konservierende Bodenbearbeitungsverfahren.
- Anbau winterharter/-toleranter Zwischenfrüchte bzw. Anlage von winterharten Untersaaten zur Nährstoffkonservierung über Winter.
- Etablierung gewässerverträglicher Anbau- und Düngeverfahren.
- Stilllegung mit gezielter Begrünung, ggf. Umwandlung von Acker in Grünland (Schnittnutzung)
- Einsatz verlustmindernder Düngetechnik. Mineralische Düngung: z.B. Cultan-Verfahren, Reihen-/Beetdüngerstreuer. Organische Düngung: z.B. Gülleinjektion, Schleppschuhtechnik, Gülle-Unterfußdüngung.
- Einsatz verteiloptimierter Düngetechniken.
- Untersuchung der Wirtschaftsdünger auf den tatsächlichen Nährstoffgehalt.
- Entscheidungshilfen zur standortdifferenzierten Düngung.
- Extensive Grünlandbewirtschaftung gem. Förderrichtlinien (Beschränkung Viehbesatz, Beschränkung Düngung, Beschränkung PSM)
- Best Practice (z.B. reduzierte N-Düngung, Absenkung N-Obergrenze, Hoftorbilanz etc.)

68. Gibt es punktuell höhere Nitrat-N-Gehalte im Grund- und Oberflächenwasser, die im Umfeld von Biogasanlagen und Intensivtierhaltungsanlagen liegen? Sieht die Landesregierung hier einen Zusammenhang?

Punktuell kann ein Kausalzusammenhang zu Einzelanlagen nicht belegt werden. Dies liegt einerseits daran, dass die vorhandenen Messnetze auf das Monitoring der GWK und Oberflächengewässer, nicht jedoch auf die Überwachung einzelner Einträge ausgerichtet sind. Andererseits sind auch die konkreten Ausbringungsflächen stickstoffhaltiger Düngemittel nicht bekannt.

Allerdings ist den Auswertungen zur Belastungssituation auch deutlich zu entnehmen, dass gerade in den viehstarken Regionen Nordrhein-Westfalens sowie den Regionen mit intensivem Gemüseanbau auch die höchste Gewässerbelastung vorliegt.

69. Wie beurteilt die Landesregierung das Ausbringen der Abfälle aus den Abluftreinigungsanlagen (Luftwäscher-Anlagen) hinsichtlich der darin enthaltenen Rückstände?

Luftwäscher können in verschiedensten Industriebereichen zur Abscheidung unterschiedlicher Verbindungen eingesetzt werden. Als Abfälle fallen hier üblicherweise "Abwässer" an. Das Ausbringen von "Abwässern" aus Luftwäschern auf landwirtschaftliche Flächen ist jedoch nur für die Ammoniakabscheidung in Form einer Ammoniumsulfat-Lösung (ASL) bekannt. Entsprechende Luftwäscher werden u. a. in Tierhaltungsanlagen, in mechanischbiologischen Abfallbehandlungsanlagen (MBA) als Vorstufe vor einer Anlage zur regenerativen thermischen Oxidation (RTO) und in biologischen Abfallbehandlungsanlagen vor einem Biofilter eingesetzt.

Für die landwirtschaftliche Verwertung von ASL stellt das Düngerecht einige Anforderungen: Zunächst darf ASL aus der Abluftwäsche nur aus Tierhaltungsanlagen, Anlagen zur Herstellung/Verarbeitung von Lebens-, Genuss- und Futtermitteln, Energieerzeugung, Kläranlagen, Bioabfallbehandlungsanlagen und MBA stammen (vgl. Anlage 2 Tabelle 6 Nummer 6.1.1 DüMV).

"Abwasser" aus Abluftwäschern kann unter folgenden Bedingungen als Düngemittel in den Verkehr gebracht und damit auch landwirtschaftlich verwertet werden:

Gemäß Anlage 1 Tabelle 1 Nummer 1.1.12 in Verbindung mit Anlage 2 Tabelle 6 Nummer 6.1.1 DüMV ist Abwasser aus der Abluftreinigung von Tierhaltungsanlagen als ASL zulässig, sofern:

- das Düngemittel schadstoffseitig unbedenklich ist (s. hierzu die Grenzwerte der Anlage 2 Tabelle 1.4 DüMV) und
- die N\u00e4hrstoffgehalte gem\u00e4\u00df 1 Tabelle 1 Nummer 1.1.12 Spalte 2 D\u00fcMV (mindestens 5 % Stickstoff und 6 % Schwefel in der Frischmasse) erreicht werden (dies ist bei W\u00e4schern, die Schwefels\u00e4ure einsetzen, in der Regel der Fall).

Gemäß § 8 Absatz (Abs.) 1 DüV dürfen Düngemittel, die gemäß DüMV zulässig sind, auf landwirtschaftlichen Flächen ausgebracht werden.

Sollte die ASL an andere Landwirte abgegeben werden (Inverkehrbringen), so muss sie mit einer Deklaration gemäß § 6 in Verbindung mit Anlage 2 Tabelle 10 DüMV versehen sein. Der allgemeine Grundsatz der Unschädlichkeit für Mensch, Tier und Umwelt bleibt hiervon unbenommen (§ 3 Abs. 1 Nummer 1 DüMV).

D. Landwirtschaft und Umweltmedium - Luft

1. Emissionen von Schadstoffen in die Luft

70. Wie ist die Entwicklung der Ammoniakemissionen aus landwirtschaftlicher Produktion und Düngemitteleinsatz von 1990 bis 2013 in NRW?

Angaben zu Ammoniakemissionen liegen zurzeit für den Zeitraum 1990 bis 2012 vor. Die Emissionsdaten stammen vom Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei (Johann Heinrich von Thünen-Institut) in Braunschweig, welches die Emissionen der Landwirtschaft für das Nationale Inventar des UBA ermittelt und für die einzelnen Länder ausweist.

Im Bereich der landwirtschaftlichen Produktion treten Ammoniakemissionen fast ausschließlich bei der Tierhaltung auf. In Abb. 15 ist die Zeitreihe in graphischer Form dargestellt. Die NH₃-Emissionen sind seit 1990 um 8.770 t NH₃ oder ca. 12 % zurückgegangen. Das Emissionsmaximum lag im Jahr 1990 bei 71.410 t/a. Seit etwa 1995 liegen die Emissionen auf einem etwa gleichbleibenden Niveau mit jährlichen Schwankungen. Der größte Beitrag unter den 21 betrachteten Nutztierarten entstammt der Haltung von Milchkühen und Mastschweinen.

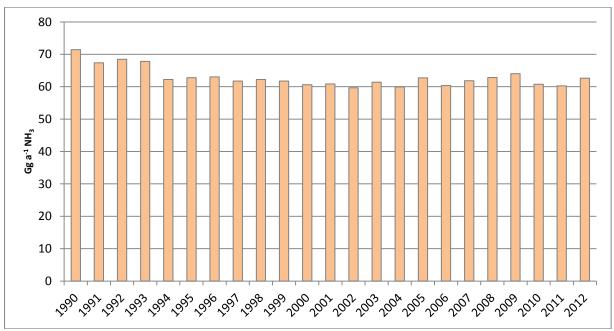


Abbildung 15: Zeitreihe der NH₃-Emissionen aus der Tierhaltung in Nordrhein-Westfalen

Für den Bereich Düngemitteleinsatz liegen Daten aus dem Absatz von Mineraldüngern vor.

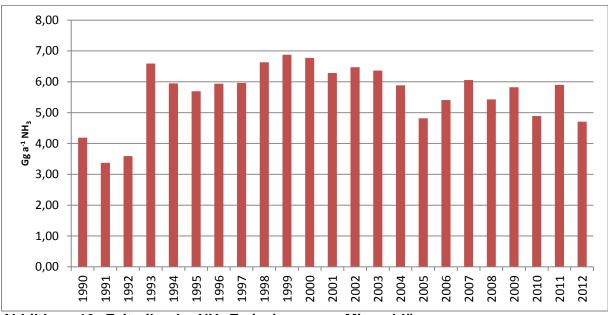


Abbildung 16: Zeitreihe der NH₃-Emissionen aus Mineraldüngern

In Abb. 16 ist die Zeitreihe der NH_3 -Emssionen aus Mineraldüngern dargestellt. Sie sind von 4.190 t/a NH_3 in 1990 auf 4.710 t/a NH_3 in 2012 angestiegen. Der Anstieg ist deutlich schwankend über die einzelnen Jahre verlaufen. Das Emissionsmaximum lag im Jahr 1999 bei 6.880 t/a NH_3 , das Minimum im Jahr 1991 mit 3.370 t/a NH_3 . Auf die gesamte Zeitreihe bezogen, sind die Emissionen von 1990 bis 2012 um 520 t/a NH_3 oder um 11 % gestiegen.

71. Wie beurteilt die Landesregierung den Einsatz und die Effizienz von Abluftreinigungsanlagen?

Für den Einsatz von Abluftreinigungsanlagen sind bei Stallanlagen bestimmte bauliche Voraussetzungen erforderlich. Zum einen ist der Einsatz zunächst nur bei geschlossenen, zwangsbelüfteten Haltungsformen möglich. Zum anderen gehört dazu eine zentrale Abluftführung, die die Ableitung der Abluft über die Abluftreinigungsanlage ermöglicht. Diese Grundvoraussetzungen sind in der Regel bei Neuanlagen gegeben. Bei Altanlagen ist i.d.R. bei Fehlen einer zentralen Abluftführung die Verhältnismäßigkeit des nachträglichen Einbaus nicht gegeben. Bei Offenställen ist der Einsatz von Abluftreinigungsanlagen nicht möglich.

Der "NRW-Tierhaltungserlass" vom 19.02.2013 regelt bereits diese Fragestellung, differenziert nach der Schweinehaltung und der Geflügelhaltung. Dort wird die Abluftreinigung als Stand der Technik für große Schweinehaltungsanlagen vorgeschrieben.

Im Hinblick auf die Abscheideleistung (Effizienz) von Abluftreinigungsanlagen wird auf die Antwort auf Frage 75 verwiesen.

72. In welchen Mengen werden die verschiedenen Treibhausgase durch die nordrhein-westfälische Landwirtschaft emittiert? Welchen Anteil haben hierbei Viehhaltung, Biomasse-Anbau, Düngung, Pflanzenschutz und Humusabbau?

Die Emissionsdaten zu den Treibhausgasemissionen der Landwirtschaft in NRW stammen vom Johann Heinrich von Thünen-Institut in Braunschweig, das die Emissionen der Land-

wirtschaft für das Nationale Inventar des UBA ermittelt und für die einzelnen Länder ausweist und liegen für den Zeitraum 1990 bis 2012 vor.

Im Sektor Landwirtschaft wird CO_2 , CH_4 und N_2O emittiert. Von 1990 bis 2012 sind die Treibhausgasemissionen in der Landwirtschaft um 21,8 % zurückgegangen. Der Trend in der Abb. veranschaulicht dies. Die höchsten Emissionswerte sind für das Jahr 1990 mit 9,9 Mill. Tonnen CO_2 - Äquivalenten angefallen, die niedrigsten mit 7,6 Mill. Tonnen CO_2 - Äquivalenten im Jahr 2007.

Die Viehhaltung hat einen Anteil von durchschnittlich etwa 40 % an den landwirtschaftlichen Treibhausgasemissionen. Der Anteil der Düngung (N_2 O-Emissionen, v.a. aus mineralischer oder organischer Stickstoff-Düngung) beträgt durchschnittlich 60 %. Ein kleinerer Teil der Lachgas-Emissionen stammt aus dem Abbau von Ernterückständen (0,5 bis 0,6 Mill. Tonnen CO_2 - Äquivalente). Für Biomasse-Anbau und Pflanzenschutz liegen keine separaten Informationen vor. Treibhausgasemissionen beim Biomasse-Anbau sind im Wesentlichen der Düngung zuzurechnen.

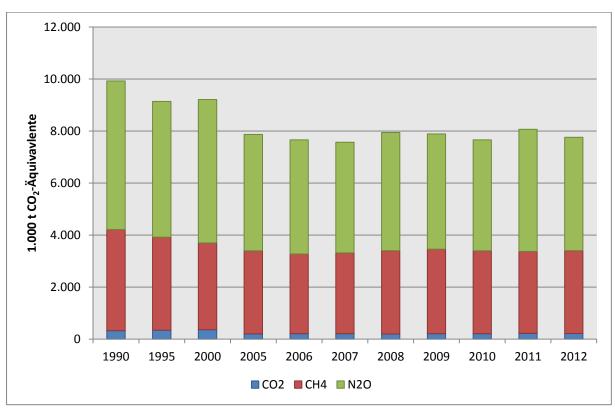


Abbildung 17: Zeitreihe der Treibhausgasemissionen der Landwirtschaft in NRW, getrennt nach CO₂, CH₄ und N₂O

Der Humusabbau wird im Emissionsinventar nicht im Bereich Landwirtschaft erfasst. Änderungen der Kohlenstoffvorräte im Boden, sowohl bei gleichbleibender Landnutzung als auch bei Landnutzungsänderungen, werden im Emissionsinventar in der Gruppe "Landnutzung, Landnutzungsänderung und Forstwirtschaft" erfasst. Kohlenstoffdioxid- -Emissionen (CO₂) entstehen in diesem Bereich v.a. durch die landwirtschaftliche Nutzung von Moorböden und durch die Umwandlung von Grünland in Ackerland. Durch die laufende Acker- oder Grünlandnutzung auf Mineralböden entstehen der Emissionsberichterstattung zufolge keine Emissionen. Zahlen für NRW liegen für den Bereich "Landnutzung, Landnutzungsänderung und Forstwirtschaft" bisher nicht vor.

73. Liegen der Landesregierung Erkenntnisse vor, dass es in ländlichen Regionen zu Beeinträchtigungen der Luftqualität durch Pflanzenschutzmittel kommt und wenn ja, welche Stoffe sind ggfs. relevant und welche Auswirkungen auf die menschliche Gesundheit können dadurch hervorgerufen werden?

Messergebnisse zur Konzentration von PSM in der Umgebungsluft in NRW liegen nicht vor. Bundesweit werden laut Auskunft des UBA nur im Rahmen des European Monitoring and Evaluation Programme (EMEP) an wenigen Messstellen die Konzentrationen einiger Chlorpestizide gemessen. Hintergrund dieser Messungen ist die Beobachtung des weltweiten Transports dieser besonders stabilen Verbindungen, deren Anwendung in Deutschland und der EU verboten oder nur in Ausnahmefällen zugelassen ist. Die Jahresmittelwerte dieser Verbindungen betragen deutlich unter 0,1 ng/m³.

Die gegenwärtig in der Landwirtschaft eingesetzten Pflanzenbehandlungsmittel sind demgegenüber chemisch deutlich weniger stabil. Ihre atmosphärische Halbwertszeit beträgt wenige Stunden bis einige Tage. Zu diesen Verbindungen liegen aus Deutschland nach Aussage des UBA keine aktuellen Messwerte vor. Messungen aus europäischen Nachbarländern, hier ist vor allem Frankreich zu erwähnen, belegen, dass dort die Jahresmittelwerte der Konzentrationen der Verbindungen (z. B. Chlorpyriphos-Ethyl, Pendimethalin und Metazachlor) allgemein niedriger als 1 ng/m³ sind. Obwohl sich die Agrarstrukturen von NRW und Frankreich unterscheiden, sind diese Ergebnisse mit Einschränkungen auch auf Deutschland übertragbar.

Bei den o.g. Konzentrationen von Pestiziden in der Luft ist davon auszugehen, dass diese keinen relevanten Beitrag zur Belastung des Menschen darstellen. Genauere Abschätzungen der Exposition und damit auch der gesundheitlichen Auswirkungen lassen sich in Anbetracht der Datenlage jedoch nicht treffen.

2. Minderung von Emissionen

74. Welche konkreten Maßnahmen zur Senkung von CO₂-, CH₄-, und N₂O-Emissionen aus der Landwirtschaft hat die Landesregierung bereits ergriffen, und welche Maßnahmen sind geplant?

CO₂-Emissionen

CO₂-Emissionen aus landwirtschaftlicher Tätigkeit entstehen einerseits durch Nutzung fossiler Energiequellen (z.B. als Treibstoff, Strom) und andererseits durch Freisetzung langjährig im Boden gespeicherter Kohlenstoffvorräte (Humus/Torf) beim Umbruch von Grünland und der ackerbaulichen Nutzung ehemaliger Moorstandorte. Alle schon in der Vergangenheit vielfältig ergriffenen Maßnahmen der Landesregierung zur Einsparung fossiler Energien in Landwirtschaft und Gartenbau sowie zum Schutz und Erhalt kohlenstoffreicher Böden tragen daher zur Senkung von CO₂-Emissionen bei. Zu nennen sind hier beispielhaft:

- Förderung investiver Maßnahmen zur Energieeinsparung, zur effizienten Energieumwandlung und -nutzung sowie zur Umstellung auf erneuerbare Energien im Rahmen des Agrarinvestitionsförderungsprogramms
- weitere Landesprogramme zur investiven F\u00f6rderung von Ma\u00dfnahme im Bereich "Energie" (z.B. progres.nrw-Markteinf\u00fchrung und progres.nrw-Kraft-W\u00e4rme-Kopplung)
- Die Landesregierung stellt der LWK NRW seit dem Jahr 2007 zweckgebundene Finanzmittel für Versuche und zur Beratung der Landwirtschaft in Energiefragen zur

Verfügung. Hieraus werden z.B. die Erarbeitung und Veröffentlichung von Grundlagendaten, die Energielehrschau im Landwirtschaftszentrum Haus Düsse und ein kostenloser Energiecheck in landwirtschaftlichen Betrieben finanziert. In Gartenbaubetrieben konzentrieren sich die Arbeiten auf Maßnahmen zur Energieeffizienzsteigerung in Gewächshäusern. Ebenso wird die Beratung zur Umstellung auf erneuerbare Energien (z.B. Biogas, Rapsöl) finanziell gefördert.

- Förderung von Forschungs- und Entwicklungsprojekte (F&E) sowie Demonstrationsvorhaben und Pilotprojekten. Aktuell fördert die Landesregierung ein Projekt "Intelligente Energie in der Landwirtschaft" der Fachhochschule Köln in Zusammenarbeit mit dem Verein NaRoTec e.V. und dem Maschinenring Brakel. Gegenstand dieses Projektes ist es, durch die Analyse gezielt installierter Stromzähler in landwirtschaftlichen Betrieben Informationen über den Verbrauch von verschiedenen Maschinen zu gewinnen und Besonderheiten wie Anomalien und Regelmäßigkeiten im Lastverlauf aufzuzeigen. Die daraus resultierenden Erkenntnisse sollen als Grundlage für eine anschließende energetische Effizienzbewertung des Betriebs dienen und ein intelligentes Energiemanagement mit verringerten Kosten ermöglichen. Im Rahmen der Forschungsförderung "Umweltverträgliche und standortgerechte Landwirtschaft" wird darüber hinaus ein Projekt der Universität Bonn "Verfahrenstechnische Bewertung konkurrierender Lösungen zur Nutzung regenerativer Energie zum Heizen und Kühlen von Stallanlagen" finanziert. Ziel der Untersuchungen ist es, einen Praxisvergleich von verschiedenen Konzepten zur Nutzung regenerativer Energiequellen durchzuführen und Werte zu deren Leistungsfähigkeit zu gewinnen. Unter dem Gesichtspunkt des effizienten Energieeinsatzes in Stallanlagen werden außerdem Dämmstoffe hinsichtlich ihrer Eignung und Langlebigkeit bewertet. Mit den Klimaschutzwettbewerben wird die Landesregierung in der kommenden Förderperiode des Europäischen Fonds für regionale Entwicklung (EFRE) auch künftig die CO₂-Einsparung in Förderprojekten unterstützen.
- Der Umbruch von Grünland in Ackerland ist nach dem Landeswassergesetz (LWG) in Gewässerrandstreifen und festgesetzten Überschwemmungsgebieten verboten. Ebenso enthalten viele Wasserschutzgebietsverordnungen ein Umbruchverbot für Dauergrünland.
- Nach dem Naturschutzrecht ist ein Grünlandumbruch auf erosionsgefährdeten Hängen, in Überschwemmungsgebieten, auf Standorten mit hohem Grundwasserstand sowie auf Moorstandorten zu unterlassen. Ein Verbot zur Umwandlung von Grünland in Acker wurde in zahlreichen naturschutzrechtlichen Schutzgebieten (Naturschutzgebieten, Landschaftsschutzgebieten) umgesetzt. Ein strenges Veränderungsverbot besteht zudem für gesetzlich geschützte Grünlandbiotope.
- Die 2011 erlassene DGL-VO verbietet grundsätzlich die Überführung von Dauergrünland in eine andere landwirtschaftliche Nutzung. Hierdurch soll der Anteil des Dauergrünlandes an der landwirtschaftlichen Fläche in NRW stabil gehalten werden. Für umweltsensibles Dauergrünland in eingetragenen Fauna-Flora-Habitat-Gebieten (FFH) wird zudem ab 2015 nach dem Direktzahlungen-Durchführungsgesetz (Direkt-ZahlDurchfG) ein Verbot eines Pflegeumbruchs mittels Pflug gelten.
- Die F\u00f6rderung verschiedener AUM im Rahmen des NRW-Programms "L\u00e4ndlicher Raum" zielt ebenfalls darauf ab, Dauergr\u00fcnland zu erhalten und eine besonders umweltschonende Bewirtschaftung zu honorieren.

N₂O-Emissionen

N₂O-Emissionen resultieren aus direkten und indirekten Emissionen aus Böden sowie dem Güllemanagement. Dabei ist die Höhe der Emissionen insbesondere abhängig von der absoluten Höhe des Stickstoffeintrages und unterliegt einer Reihe von natürlichen, nicht beeinflussbaren Parametern. Alle Maßnahmen, die zu einer besseren Anpassung der N-Düngerzufuhr an den Bedarf der Pflanzen sowie zur Minderung von N-Verlusten bei der Düngung führen, sind geeignet, Lachgasverluste zu minimieren (Effizienzsteigerung). In gleicher Weise tragen solche Maßnahmen auch zur Minderung von Nitrateinträgen in Gewässer sowie zur Verringerung von Ammoniakemissionen (insbesondere bei der Gülleausbringung) bei. Dementsprechend wirken alle im Teil C 3 "Stickstoffeinträge in Gewässer" (Fragen 62 – 69) aufgeführten Maßnahmen der Landesregierung auch auf eine Verringerung von Lachgasemissionen. Auf die Antworten zu diesen Fragen wird verwiesen.

CH₄-Emissionen

CH₄-Emissionen (Methan) der Landwirtschaft entstehen aus der tierischen Verdauung (Wiederkäuer) sowie bei der Lagerung und Ausbringung von Gülle. Möglichkeiten der Minderung dieser Emissionen sind begrenzt und beschränken sich aktuell vorrangig auf die Vergärung von Gülle in Biogasanlagen. Die Landesregierung hat in der Vergangenheit durch investive Förderung, Demonstrationsprojekte, F&E-Projekte sowie Unterstützung von Beratungsleistungen der Energieagentur und der LWK NRW den Ausbau der Biogastechnologie unterstützt. Anlässlich der jüngsten Novelle des Erneuerbare-Energien-Gesetz (EEG) hat sie sich für eine Beibehaltung der Vergütungsregelungen für ausschließlich auf Basis von Gülle betriebenen, kleinen Biogasanlagen eingesetzt und beabsichtigt dies auch weiterhin.

Im Rahmen des Beteiligungsverfahrens zur Erarbeitung des Klimaschutzplans wurde in der Arbeitsgruppe "Landwirtschaft/Forstwirtschaft/Boden" eine Vielzahl von Maßnahmenvorschlägen zur Senkung von Treibhausgasemissionen dieses Sektors erarbeitet. Die Vorschläge werden aktuell von der Landesregierung geprüft und geeignete und umsetzbare Maßnahmen in Kürze dem Landtag vorgelegt werden.

75. Welche Immissionsminderungen bei Staub, Keimen, Ammoniak und Geruchsstoffen werden mit Hilfe von Abluftreinigungsanlagen durchschnittlich, und welche maximal erreicht?

Die durch Abluftreinigungsanlagen erreichbaren Immissionsminderungen hängen sehr stark von den örtlichen Gegebenheiten, z. B. den Ausbreitungsbedingungen, ab. Die Frage wird daher im Hinblick auf die möglichen Emissionsminderungen beantwortet.

Der Einsatz von Abluftreinigungsanlagen beschränkt sich auf Grund der derzeit begrenzten Verfügbarkeit eignungsgeprüfter Systeme hauptsächlich auf die Schweinehaltung (Mastschweine) sowie die Geflügelmast (Masthähnchen). Bei den übrigen Tierarten muss gegebenenfalls die Wirksamkeit einer Abluftreinigung im Einzelfall nachgewiesen werden.

Zur Minderung von Bioaerosolen (Keimen) durch Abluftreinigungsanlagen liegen bisher vereinzelte Messungen vor. Diese lassen erkennen, dass durch diese Maßnahme eine Minderung um den Faktor 10 bei Bioaerosolen (Keimen) erwartet wird.

Schweinehaltung

Mehrere Hersteller haben ihre Abluftreinigungsanlagen einer Eignungsprüfung unterzogen. Die Abscheideleistung liegt bei den aktuell verfügbaren Abluftreinigungsanlagen für Ammoniak und Staub bei jeweils ≥ 70 %. Für Gerüche wird im Reingas von Abluftreinigungsanlagen eine Geruchskonzentration von 300 GE/m³ erreicht. Dies führt dazu, dass typischer Stallgeruch nicht mehr wahrnehmbar ist.

Geflügelhaltung

Der Einsatz von Abluftreinigungsanlagen zur Emissionsminderung ist bei der Geflügelhaltung derzeit noch kaum verbreitet und der Stand der Technik befindet sich noch in der Entwicklung. Lediglich für die Hähnchenmast gibt es derzeit ein System, bei dem die Abscheideleistung im Rahmen einer Eignungsprüfung für Ammoniak und Staub bei jeweils ≥ 70 % ermittelt wurde.

Für die Abscheideleistung von Gerüchen bei der Geflügelhaltung gibt es derzeit keine allgemein gültige Größenordnung. Diese muss im Einzelfall ermittelt werden.

76. Welche Änderungen der Düngeverordnung hält die Landesregierung zur Verminderung der CO₂-, CH₄-, und N₂O-Emissionen aus der Landwirtschaft für erforderlich?

Von den genannten Treibhausgasen werden nur die N_2 O-Emissionen wesentlich von den Regelungen der DüV beeinflusst. Direkte N_2 O-Emissionen resultieren aus der N-Düngung (Zufuhr von Düngemitteln, legume N-Bindung, Rückführung von Ernteresten), indirekte Lachgasfreisetzungen entstehen aus N-Verlusten (Ammoniakverluste und anschließende Deposition auf dem Boden, Aus- und Abwaschung von Stickstoff in Grund- und Oberflächengewässer).

Grundsätzlich führt eine Reduzierung der N-Düngung immer zu direkten THG-Einsparungen, bei gleichzeitiger Verringerung der Produktionsmenge kann dies aber nicht per se als Klimaschutzmaßnahme angesehen werden, da das verringerte Angebot an Agrarprodukten zu Intensivierung oder Landnutzungsänderungen an anderen Orten führen kann.

Ziel der Änderungen der DüV ist daher, eine möglichst hohe Effizienz des eingesetzten Stickstoffs bei gleichzeitiger Reduzierung von Verlusten in die Atmosphäre und Einträgen in Gewässer zu erreichen. Durch effizienten Einsatz von Wirtschaftsdüngern aufgrund geringerer Verluste in die Umwelt können mineralische Stickstoffdünger eingespart werden, für deren Herstellung ein hoher Energieaufwand erforderlich ist. Die dazu notwendigen Änderungen der DüV sind in der Antwort zu Frage 116 aufgeführt.

77. Welche weiteren gesetzlichen Regelungen oder Verordnungen müssten – auf welcher Gesetzgebungsebene - geändert werden?

Zur Minderung der Schadstoffemissionen aus Tierhaltungsanlagen gemäß dem Stand der Technik hat Nordrhein-Westfalen als erstes Land am 19.02.2013 einen Erlass, der über die Anforderungen der Technischen Anleitung (TA) zur Reinhaltung der Luft (TA Luft) hinausgeht, eingeführt. Die Länder Niedersachsen und Schleswig-Holstein haben inzwischen vergleichbare Regelungen erlassen. Um die Begrenzung der Luftemissionen aus der Tierhaltung bundeseinheitlich zu regeln, müsste die TA Luft, die als Bundes-Verwaltungsvorschrift die Anforderungen zur Emissionsminderung entsprechend dem Stand der Technik für alle

nach dem Bundes-Immissionsschutzgesetz genehmigungsbedürftigen Anlagen konkretisierend regelt, entsprechend angepasst werden. Die Bundesregierung hat angekündigt, die seit 2002 geltende TA Luft noch in dieser Legislaturperiode an den fortgeschrittenen Stand der Technik und die zwischenzeitlich fortentwickelten europa- und bundesrechtlichen Regelungen zum Umweltschutz anzupassen. Nordrhein-Westfalen wird sich im Rahmen des laufenden Novellierungsverfahrens der TA Luft dafür einsetzen, dass die bereits per Erlass in NRW eingeführten Anforderungen zur Emissionsbegrenzung bei Tierhaltungsanlagen in die TA Luft übernommen werden. Hierbei können auch Weiterentwicklungen Berücksichtigung finden, die sich seit Einführung des NRW-Erlasses ergeben haben oder ggf. ergeben werden, wie beispielsweise die Abluftreinigung bei bestimmten Geflügelhaltungsanlagen.

E. Landwirtschaft und Biologische Vielfalt

- 1. Biodiversitätsverluste durch Landwirtschaft
- 78. Was sind nach Einschätzung der Landesregierung die Hauptgründe für den Rückgang der Artenvielfalt in der Agrarlandschaft?

Nordrhein-Westfalen verfügt über einen großen Reichtum an verschiedenen Naturräumen und Kulturlandschaften. Diese sind auch Lebensraum von ca. 44.000 Tier-, Pflanzen- und Pilzarten. Die Zusammenhänge zwischen den anthropogenen Nutzungen und der Artenvielfalt sind dabei komplex. Die Landwirtschaft z.B. prägt, formt und überformt halbnatürliche, natürliche und naturnahe Lebensräume seit Tausenden von Jahren. Zugleich ist die Landwirtschaft auf den Ablauf vieler natürlicher Prozesse und damit letztlich auf funktionsfähige Ökosysteme angewiesen.

In der aktuellen Roten Liste des Landes NRW werden 45 % aller Arten als (stark) gefährdet, vom Aussterben bedroht oder als bereits ausgestorben geführt. Ein erheblicher Teil dieser gefährdeten Arten sind Arten, die auf offene oder halboffene Landschaften mit einer in der Regel extensiven landwirtschaftlichen Nutzung angewiesen sind. In einer Analyse der Gefährdungsursachen verschiedener Tiergruppen wird aufgrund einer Expertenbefragung (Günther et al. 2005: Analyse der Gefährdungsursachen planungsrelevanter Tiergruppen in Deutschland. - Naturschutz & Biologische Vielfalt 21. – Bundesamt für Naturschutz (BfN), Bonn) die intensive Landwirtschaft als mit Abstand wichtigster Gefährdungskomplex vor Forstwirtschaft, Wasserbau/Schifffahrt, Sport- und Freizeitaktivitäten und Baumaßnahmen/Rohstoffgewinnung benannt. 70 % der 601 berücksichtigten Tierarten sind durch Gefährdungen aus dem Bereich Landwirtschaft betroffen. Für die Arten des Offenlandes stammen acht der zehn wichtigsten Gefährdungsursachen wie z.B. Nutzungsintensivierung und Umbruch aus dem Bereich der Landwirtschaft.

Für die Vögel der Agrarlandschaft haben die Deutsche Ornithologen-Gesellschaft und der Dachverband Deutscher Avifaunisten 2011 die Ergebnisse der umfangreichen Literatur zum Thema ausgewertet und die wesentlichen Rückgangsursachen und Belastungsfaktoren zusammengestellt. Zusammengefasst ergibt sich folgende Übersicht:

- Intensive Grünlandbewirtschaftung.
- Umwandlung von Grünland in Acker.
- Zunehmender Anbau von Mais zu Lasten traditioneller Anbausaaten und auf ehemals unrentablen Minderertragsflächen; Maisanbau als Substrat für Biogasanlagen ist be-

sonders problematisch im Zweikultursystem mit Grünroggen (Gelege- und Jungtierverluste).

- Beseitigung von Weg- und Ackerrainen (auch die im öffentlichen Besitz): Verlust von Rainen, Säumen u.ä. Grenzlinien als Brut-, Nahrungs-, Aufzucht- und Überwinterungshabitate.
- Strukturveränderung durch hohe Stickstoff-Düngergaben. Stark gedüngte Kulturpflanzen mit engen Reihenabständen wachsen schnell und dicht auf (besonders Wintergetreide): Die Lebensbedingungen für bodengebundene Feldvögel verschlechtern
 sich (eingeschränkte Bewegungsfreiheit, kühl-feuchtes Mikroklima).
- Starker Rückgang selbstbegrünter Ackerbrachen nach Ende der obligatorischen EU-Flächenstilllegungen ab Ende 2007.
- Anwendung von PSM.
- Der Einsatz zunehmend breiterer und schnellerer Erntemaschinen, besonders im Grünland, zunehmend auch nachts, steigert das Risiko von Gelege- und Jungtierverlusten.
- Trockenlegung von Feuchtgrünland und Kleingewässern.
- Düngung und Kalkung von Grünland (v.a. Frisch-, Feuchtwiesen und Magerrasen).
- Brachfallen von Magerrasen.
- Beseitigung von Hecken, Knicks und Steinrücken.
- Prädationsdruck durch die in hohen Bestandsdichten vorkommenden Generalisten wie Fuchs, Steinmarder, Rabenkrähe sowie die Neozoen (besonders Waschbär; nachrangig Marderhund und Mink) und deren Bedeutung für geschwächte Beutetierpopulationen.

79. Welche Erkenntnisse und welche Nachweise liegen der Landesregierung zu schädlichen Auswirkungen der Anwendung von Pflanzenschutzmitteln auf die Biodiversität in Ackerbau- und Grünlandregionen in Nordrhein-Westfalen vor?

Eine aktuelle Studie des UBA (2014: Protection of biodiversity of free living birds and mammals in respect of the effects of pesticides. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety. Project No. (FKZ) 3710 63 411; Report No. (UBA-FB) 001830) belegt die direkten und besonders die indirekten Auswirkungen der Anwendung von PSM auf die Biodiversität und wird von der Landesregierung für Nordrhein-Westfalen als gleichermaßen zutreffend wie für andere Bundesländer und für Europa angesehen.

Die indirekten Auswirkungen der PSM-Anwendung sind zahlreich. Zu den wesentlichen zählen:

- das Fehlen von Nahrungspflanzen durch Anwendung von Herbiziden, dies sowohl auf der Ebene der Arten (qualitativ) als auch der Biomasse (quantitativ) für Wirbeltiere und wirbellose Tiere.
- der Rückgang der Biomasse von Insekten und weiteren Wirbellosen durch Anwendung von Insektiziden und Herbiziden mit daraus resultierendem Nahrungsmangel für Wirbeltiere,

- die Unterbrechung der Lebenszyklen von Insekten von der Eiablage über die verschiedenen Stadien der Metamorphose bis zur Entwicklung der ausgewachsenen Tiere,
- das Fehlen von Insektennahrung (Biomasse) für Küken, die in den ersten Lebenswochen ausschließlich auf Insektennahrung angewiesen sind (dieser "Laufmascheneffekt einer aufgebrochenen Nahrungs-Masche in der Nahrungskette" wurde bereits 1983 beschrieben).

Direkte Wirkungen von PSM sind letale und subletale Wirkungen auf "Nichtzielorganismen" (Säugetiere, Vögel, Amphibien, Fische, Insekten, Honigbienen, Krebse, Mollusken und Ringelwürmer). Diese sind – bei unsachgemäßer oder illegaler Anwendung – möglich, sind jedoch in ihrer Bedeutung nachrangig hinter den indirekten Auswirkungen.

Die UBA-Studie (2014) zeigt auf, dass eine indirekte Wirkung von PSM auf Populationsniveau für die europäischen Agrarvogelarten Rebhuhn, Grauammer, Goldammer und Feldlerche sowie für mehrere Säugerarten außerhalb Europas nachgewiesen ist. Daten zur Nahrungs- und Habitatwahl lassen jedoch vermuten, dass zahlreiche weitere Arten betroffen sind.

Eine aktuelle Studie (Hallmann, C.A., R.B.P. Foppen, C.A.M. van Turnhout, H. de Kroon & E. Jongejans 2014: Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. doi: 10.1038/nature13531) zeigt, dass in den Niederlanden in Gebieten mit hoher Grundwasserkontamination mit dem Neonikotinoid Imidacloprid die Brutbestände von insektenfressenden Singvögeln der Agrarlandschaft wie Feldlerche, Wiesenpieper und Wiesenschafstelze signifikant geringer sind als in Gebieten ohne eine solche hohe Konzentration. Derart hohe Imidacloprid-Konzentrationen in Oberflächengewässern wie in den Niederlanden sind in NRW nicht bekannt, die Ergebnisse sind daher nicht direkt auf Nordrhein-Westfalen zu übertragen.

Im Zuge der Neubewertung des Totalherbizid-Wirkstoffes Glyphosat hat das UBA als zuständige Bundesbehörde darauf hingewiesen, dass insbesondere dessen großflächige Anwendung auf Getreide- und Rapsstoppeln erhebliche negative Wirkungen auf die Nahrungskette (indirekte Wirkung) haben kann und daher bei der Zulassung Risikominderungsmaßnahmen ergriffen werden sollten, die derzeit nicht vorgesehen sind.

- 80. Wie beurteilt die Landesregierung den ökologischen Erhaltungszustand des Grünlandes in Nordrhein-Westfalen? (Bitte getrennte Darstellung für die Flächen innerhalb und außerhalb von Naturschutzgebieten)
- 81. In welcher Weise hat sich der Erhaltungszustand des Grünlandes durch die landwirtschaftliche Nutzung seit 1990 geändert?
 (Bitte getrennte Darstellung für die Flächen innerhalb und außerhalb von Naturschutzgebieten)

Die landwirtschaftliche Nutzfläche in Nordrhein-Westfalen wird derzeit zu ca. 26 % von Grünland eingenommen (IT.NRW, Agrarstrukturerhebung 2013). Auf der Grundlage der Zahlen von IT.NRW hat das Dauergrünland von 1990 bis 2013 um 23 % abgenommen. Dies entspricht einem Verlust von rund 89.000 ha. Im Mittelgebirge blieb der Dauergrünlandanteil stabil oder nahm geringfügig zu, im Flachland nahm er ab. Besonders stark war der Rückgang im Regierungsbezirk Münster: Von 1999 bis 2013 wurden rund 24.000 ha Grünland

umgewandelt, das entspricht knapp einem Drittel. Im gleichen Zeitraum nahm der Maisanbau in diesem Gebiet stark zu. Feucht- und Nassgrünland kommt im Flachland heute fast nur noch in Schutzgebieten vor. Dies ist auf die Anstrengungen des Feuchtwiesenschutzprogrammes zurückzuführen.

Der Erhaltungszustand des Grünlands lässt sich am besten mit dem sogenannten "HNV-Indikator" (High Nature Value Farmland) beschreiben. Nach einem bundeseinheitlichen Bewertungsverfahren wird im Rahmen der Ökologischen Flächenstichprobe NRW (ÖFS) auf der Basis des HNV-Indikators seit 2009 auch der Wert des Grünlandes (neben dem Acker) in seiner Bedeutung für die Biodiversität bewertet. Danach wird 23,2 % des Grünlandes in NRW im Jahr 2012 als höherwertiges Grünland eingestuft. Hierunter fallen 3,4 % in die höchste Wertstufe (HNV I = äußerst hoher Naturwert), 8,5 % in die HNV- Stufe II (sehr hoher Naturwert) und 11,3 % in die Wertstufe III (mäßig hoher Naturwert). Mehr als drei Viertel (76,8 %) des Grünlandes in NRW sind demnach ohne höheren Naturwert.

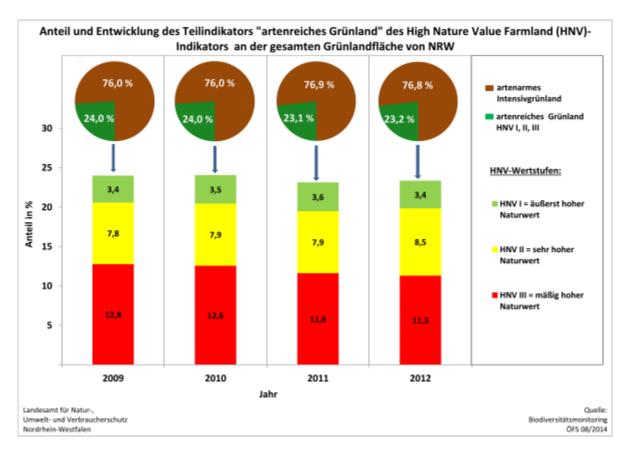


Abbildung 18: Anteil und Entwicklung des Teilindikators "artenreiches Grünland" des High Nature Value Farmland (HNV)- Indikators an der gesamten Grünlandfläche von NRW im Jahre 2012.

Einen wesentlichen Einfluss auf den ökologischen Erhaltungszustand des Grünlands hat die Art der landwirtschaftlichen Nutzung. Dies zeigt eine Auswertung der Grünlandflächen mit höherem Naturwert. Grünlandflächen, die im Rahmen der AUM "Extensive Dauergrünlandnutzung" und "Ökologischer Landbau" bewirtschaftet werden, haben einen deutlich höheren Anteil an Flächen mit hohem Naturwert (26,7 % bzw. 32 %) als Flächen, die nicht im Rahmen solcher freiwilliger Maßnahmen bewirtschaftet werden (21,7 %). Grünlandflächen mit Vertragsnaturschutz (VNS), d.h. die Bewirtschaftungsweise ist gezielt auf den Schutzzweck abgestimmt, sind mit über 56 % besonders hochwertig. Grünland auf ausgewählten, natur-

schutzfachlich besonders wertvollen sog. "Referenzflächen" ist erwartungsgemäß nahezu vollständig nach HNV-Definition eingestuft.

Ein weiteres etabliertes Werkzeug zur Ermittlung und Darstellung der Wertigkeit von Lebensräumen und Biotopen ist der sog. "Biotopwert". Im Rahmen der ÖFS werden alle kartierten Biotoptypen einer umfassenden gesamtökologischen Bewertung auf einer Skala mit den Werten zwischen 0 und 10 unterzogen. Für Grünland werden Biotopwerte zwischen 2 (z.B. Neueinsaatflächen) und 7 (z.B. ungedüngtes Feuchtgrünland) erreicht. Der mittlere Biotopwert für das gesamte Grünland in NRW beträgt 2012 durchschnittlich nur 3,8 (ÖFS NRW).

Anhand des Biotopwerts der Grünlandflächen in NRW lässt sich der Zustand des Grünlands innerhalb und außerhalb von Naturschutzgebieten (NSG), aber auch im Vergleich zwischen Bergland (kontinentale (kont.) biogeografisch Region) und Flachland (atlantische (atl.) biogeografisch Region) darstellen. Die Auswertung macht deutlich, dass der mittlere Biotopwert innerhalb der NSG deutlich höher ist als außerhalb der NSG. Im Flachland werden geringere Biotopwerte erreicht als im Bergland, die Unterschiede zwischen Grünland inner- und außerhalb von NSG sind im Bergland außerdem größer als im Flachland.

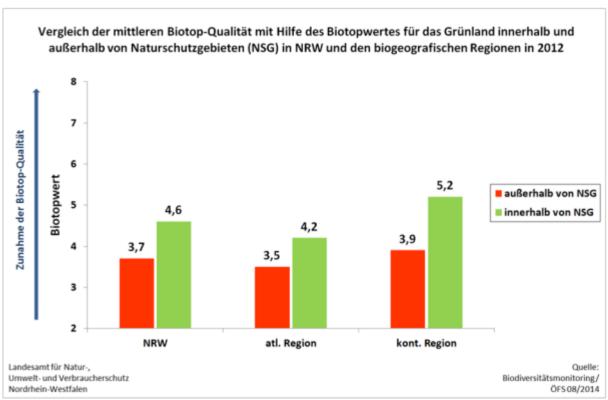


Abbildung 19: Vergleich der mittleren Biotopqualität mit Hilfe des Biotopwertes für das Grünland innerhalb und außerhalb von Naturschutzgebieten in NRW und den biogeografischen Regionen in 2012.

Repräsentative Zeitreihen für den Erhaltungszustand des Grünlandes in NRW sowohl innerhalb als auch außerhalb von NSG liegen für NRW mit der ÖFS im Rahmen des landesweiten Biodiversitätsmonitorings erst seit 2006 vor.

Einzelfalluntersuchungen belegen eingetretene Qualitätsverluste des Grünlands außerhalb von Schutzgebieten. So ließen sich von im Jahre 1985 kartierten 83 Feuchtwiesen innerhalb der Westfälischen Bucht 2004 bei einer Wiederholungserfassung nur noch 11 nachweisen. Das entspricht einem Verlust von ca. 87 % der ehemaligen Feuchtwiesen.

Die negative Entwicklung bei Grünland in NRW zeigt sich auch bei den beiden Wiesen-Lebensraumtypen (LRT) 6510 und 6520 der FFH-Richtlinie der EU. Sie sind trotz der Bemühungen und Erfolge des Vertragsnaturschutzes in ihrem Erhaltungszustand von 2007 zu 2013 in der kont. Region (Bergland) von einem unzureichenden in einen schlechten Zustand abgefallen. Im Flachland hat sich an dem schlechten Erhaltungszustand 2013 keine Verbesserung gegenüber 2007 ergeben.

Tabelle A18: Gesamtbewertung des Erhaltungszustandes der Anhang I-Lebensraumtypen 6510 und 6520 der Fauna-Flora-Habitat-Richtlinie der EU.

Lebensraumtyp		NRW atlantisch		NRW kontinental	
Lebensraum-Name	LR-Typ	2007	2013	2007	2013
Magere Flachlandmähwiesen	6510	S	S	U	S.
Artenreiche Bergmähwiesen	6520	LRT fehlt in atl. NRW		U	S

U = unzureichender Erhaltungszustand

XX = Datenlage unzureichend

Stellvertretend für den Zustand des feuchten Grünlandes in NRW können als Indikatorgruppe die Bestandsentwicklungen der wiesenbrütenden Vogelarten Uferschnepfe, Großer Brachvogel und Bekassine seit 1990 herangezogen werden. Als anspruchsvolle Feuchtwiesen-Vogelart besiedelt die Uferschnepfe die nasseren Feuchtwiesenschutzgebiete. Wie der Große Brachvogel profitierte die Uferschnepfe von den Maßnahmen des Feuchtwiesenschutzprogramms, insbesondere dem gezielten Flächenankauf, der Umwandlung von Acker in Grünland und der Anlage von Blänken. Von 1990 gingen die Bestände der Uferschnepfe von über 500 Brutpaaren auf gut 200 im Jahre 2000 zurück und stabilisierte sich danach auf niedrigem Niveau. Nahezu der Gesamtbestand brütet heute in NSG. Unter den Feuchtgrünland-Brütern ist der Große Brachvogel neben dem Kiebitz eine der weniger anspruchsvollen Arten und brütet auch auf mäßig feuchten Flächen außerhalb der Schutzgebiete.

^{1 =} verbesserte Daten, keine tatsächliche Änderung zu 2007

^{↓ =} tatsächliche Verschlechterung zu 2007

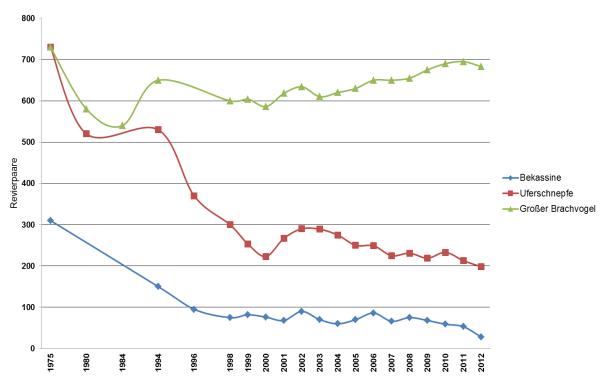


Abbildung 20: Bestandsentwicklung von Uferschnepfe, Großem Brachvogel und Bekassine in Nordrhein-Westfalen von 1975 bis 2012.

Während zu Beginn des Feuchtwiesenschutzprogramms nur 40 % in den Schutzgebieten brüteten, konzentrieren sich inzwischen 75 % der Reviere in den Grünland-Schutzgebieten. Die Reviere außerhalb werden in Folge von Intensivierung, Umbruch und Ackernutzung nach und nach aufgegeben. Erfreulicherweise hält der Große Brachvogel seine Bestände in NRW auf hohem Niveau stabil. Vorkommen der Bekassine finden sich ausschließlich in NSG, ihr Bestand ist von 1990 mit 140 Brutpaaren auf aktuell nunmehr 66-86 Paare gesunken.

- 82. Wie beurteilt die Landesregierung den ökologischen Erhaltungszustand der Ackerlebensgemeinschaften in Nordrhein-Westfalen?
- 83. In welcher Weise hat sich der Erhaltungszustand der Ackerlebensgemeinschaften durch die landwirtschaftliche Nutzung seit 1990 geändert?

In den letzten Jahrzehnten ist die vielfältige Flora und Fauna der Äcker in Nordrhein-Westfalen in den meisten Landesteilen sehr stark zurückgegangen, viele für diesen Lebensraum charakteristische Arten sind sehr selten geworden und gefährdet, einige bereits ausgestorben oder verschollen bzw. akut vom Aussterben bedroht.

Die Wertstufen des EU-Pflicht-Indikators HNV im Bereich "artenreiche Äcker und Ackerbrachen" sind auf das Vorhandensein von so genannten Kennarten innerhalb der Gruppe der Ackerwildkrautarten begründet. Hierbei handelt es sich um Arten, die besonders empfindlich auf Herbizidbehandlung und/oder mechanische Beikrautbekämpfung reagieren. In vielen Fällen handelt es sich um Rote Liste-Arten. Bundesweit gilt:

Anzahl Kennarten Acker/Ackerbrachen NRW	HNV-Bewertung		
4-5	III mäßig hoher Naturwert		
6-7	II sehr hoher Naturwert		
≥8	I äußerst hoher Naturwert		

Im Gegensatz zum Grünland verharrt der Teilindikator "artenreiche Äcker" auf einem sehr niedrigen Niveau. Bei der Erstaufnahme des HNV-Indikators im Jahre 2009 belief sich der Anteil auf 3,2 %. Dieser geringe Anteil ist in den vier Jahren seit 2009 noch weiter auf 2,3 % gesunken. Weiterhin ist auffällig, dass bei der Differenzierung nach den drei HNV-Wertstufen die HNV- Wertstufe III stark dominiert. Die höchste HNV-Wertstufe I nimmt in allen 4 Jahren nur 0,1 Prozentpunkte ein.

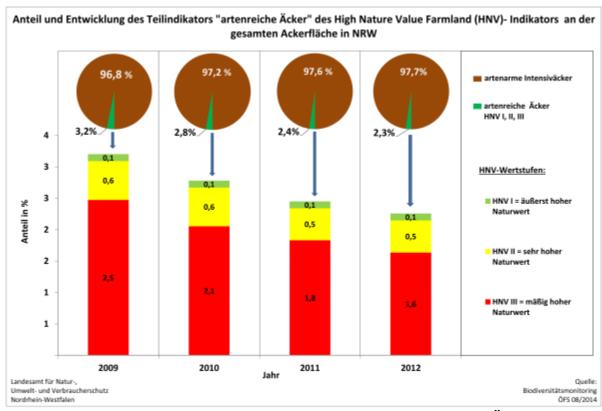


Abbildung 21: Anteil und Entwicklung des Teilindikators "artenreiche Äcker" des High Nature Value Farmland (HNV)-Indikators an der gesamten Ackerfläche von NRW im Jahre 2012.

Der Ackeranteil mit höherem Naturwert, der dem HNV-Teilindikator Acker zu Grunde liegt, ist gut geeignet, die Wirksamkeit von Maßnahmen auf die Biodiversität im Acker darzustellen. Bemerkenswert ist der Vergleich zwischen konventionellem und Öko-Landbau. Während der konventionelle Landbau im Mittel noch unter dem Landesmittel des HNV-Flächenanteils von 2,3 % liegt, ist dieser Wert im Ökolandbau mit über 16 % deutlich höher. Im Vertragsnatur-

schutz sind nahezu alle, in den Referenzflächen in der Medebacher Bucht sogar alle untersuchten Ackerflächen mit einer HNV-Wertigkeit belegt. Hier ist die Wertstufe I (äußerst hoher Naturwert) dominierend bzw. in den Referenzflächen ist der Anteil der beiden anderen HNV-Wertstufen quasi nicht vorhanden. Dahingegen ist außerhalb der Vertragsnaturschutzflächen praktisch nur die unterste HNV-Stufe III vertreten. Hiermit kann die äußerst hohe Wirkung des Vertragsnaturschutzes auf die Artenvielfalt der Ackerwildkrautflora nachgewiesen werden.

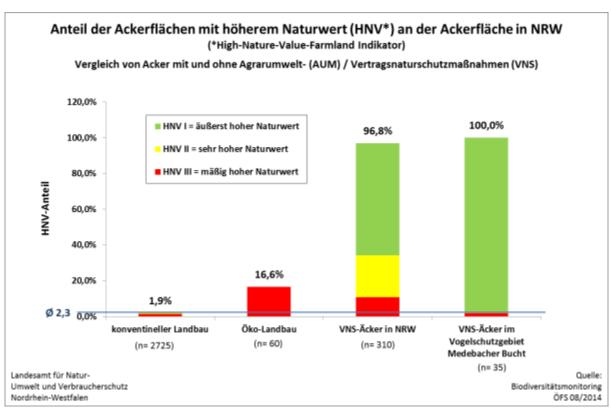


Abbildung 22: Anteil der Ackerflächen mit höherem Naturwert (HNV) an der Ackerfläche in NRW (Bezugsjahr 2012).

Es hat sich allerdings gezeigt, dass der im Grundsatz erfolgreiche Vertragsnaturschutz für einen nachhaltigen Schutz der typischen Lebensgemeinschaften der Äcker allein nicht ausreicht. Als Indikatoren für den Erhaltungszustand der Ackerlebensgemeinschaften werden auch die Roten Listen gefährdeter Pflanzen und Tiere in NRW (exemplarisch hier die Pflanzen, Vögel und Säugetiere) sowie die Bewertung des Erhaltungszustandes der Arten nach der Vogelschutz-Richtlinie herangezogen.

Vögel

Die überwiegende Zahl der Vogelarten, die essenziell auf den Lebensraum Feld/Acker angewiesen sind, befindet sich derzeit in einer der Gefährdungskategorien der Roten Liste der Vogelarten in Nordrhein-Westfalen.

In der Roten Liste der gefährdeten Vogelarten Nordrhein-Westfalens (Sudmann et al. 2008) haben sich die Bestände der Vogelarten im Lebensraum Feld/Acker wie folgt entwickelt (Vergleich der Einstufung in den Roten Listen NRW 1986, 1996 und 2008):

Tabelle A20: Gefährdung (und Trends) von Vogelarten im Lebensraum Feld/Acker in NRW. Kategorien der Roten Liste: 1 = vom Aussterben bedroht, 2 = stark gefährdet, 3 = gefährdet, V = Vorwarnliste, N bzw. S = von Schutzmaßnahmen abhängig, * = ungefährdet.

Art	Rote Liste 1986		Rote Liste 1996		Rote Liste 2008
Feldlerche	*	A	V	K	3S
Feldsperling	*	A	V	K	3
Grauammer	3	A	2	7	1S
Großer Brachvogel	2	\rightarrow	2N	^	2S
Kiebitz	*	A	3	↑	3S
Ortolan	1	\rightarrow	1	~	1
Rebhuhn	3	K	2N	^	2S
Rotmilan	3	K	2N	1	3
Schleiereule	3	1	*N	→	*S
Turmfalke	*	→	*	K	VS
Turteltaube	*	K	3	K	2
Wachtel	2	\rightarrow	2	~	2S
Wachtelkönig	1	→	1	\rightarrow	1S
Wiesenschafstelze	2	7	3	7	*
Wiesenweihe	1	→	1N	→	1S

Von den 15 Vogelarten im Lebensraum Feld/Acker hat sich von 1986 über 1996 auf 2008 lediglich die Einstufung der Schleiereule und der Wiesenschafstelze verbessert, der Rotmilan (Nahrungsgast auf Feldern, Brutvogel in Wäldern) schwankt in der Bewertung. Mit sieben Arten wurden 2008 im Vergleich zu 1986 fast die Hälfte aller Arten in eine höhere Gefährdungskategorie eingestuft. Bei weiteren fünf Arten ergab sich keine Verbesserung der Situation. Gut ein Viertel der gesamten Arten wurden bei jeder Roten Liste in eine höhere

Gefährdungskategorie eingestuft.

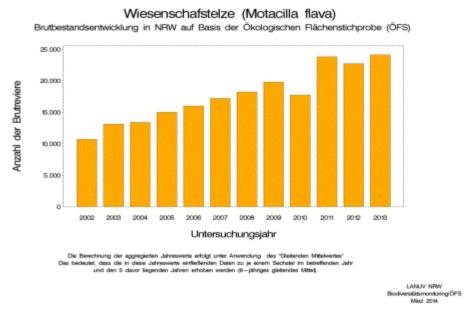


Abbildung 23: Brutbestandsentwicklung der Wiesenschafstelze in NRW auf Basis der Ökologischen Flächenstichprobe (ÖFS).

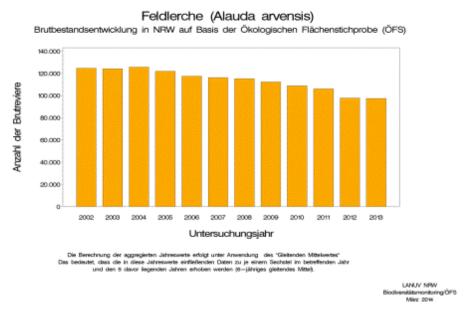


Abbildung 24: Brutbestandsentwicklung der Feldlerche in NRW auf Basis der Ökologischen Flächenstichprobe (ÖFS).

Besonders prekär ist die Situation bei den Arten, die durchgängig eine Verschlechterung in der Rote-Liste Kategorie aufweisen. Dies trifft für Feldlerche, Feldsperling, Grauammer und Turteltaube zu.

Exemplarisch werden die Bestandstrends durch die Brutbestandsentwicklungen seit 2002 von Wiesenschafstelze (Zunahme, s. Abb. 23) und Feldlerche (Abnahme, s. Abb. 24) auf Basis der ÖFS verdeutlicht. Die ÖFS stellt den Kern des Biodiversitätsmonitorings NRW dar. Basierend auf einem repräsentativen Netz von ca. 200 zufällig ausgewählten Untersuchungsflächen (ca. 0,5 % der Landesfläche) mit einer Größe von je 100 ha liefert die ÖFS

seit 1997 landesweite Daten zum Zustand und zur Entwicklung der biologischen Vielfalt der "Normallandschaft" in NRW. Auf jährlich wechselnden Untersuchungsflächen mit einem Wiederholungsrhythmus von sechs Jahren werden unter anderem alle Biotop- und Nutzungstypen, alle Gefäßpflanzen, alle Brutvögel, weitere ausgewählte Zielarten und seit 2011 alle auf Klimaveränderungen sensibel reagierenden Libellen und Tagfalter kartiert."

Für zwei weitere Arten kann inzwischen ein weiterer Rückgang dokumentiert werden. Der Ortolan muss zwischenzeitlich in NRW als ausgestorben gelten, beim Kiebitz zeigen die aktuellen Erhebungen aus 2014 einen Rückgang von 20.000 auf 12.000 Brutpaare in den letzten 5-10 Jahren. Weiterhin auffallend ist der hohe Anteil an Arten, die mit dem Zusatz S bzw. N bewertet wurden. Dies weist auf die Notwendigkeit von Schutzmaßnahmen hin. Ohne diese Maßnahmen müssten die Arten bei der nächsten Roten-Liste sehr wahrscheinlich in eine höhere Gefährdungskategorie eingestuft werden.

Die Niederwildart Fasan, ein Neozoon, wird in der Roten Liste nicht bewertet. Das intransparente Aussetzungsgeschehen erschwert eine Beurteilung der Bestandssituation zusätzlich. 2008 war mit einem Rückgang von über 40 % gegenüber dem Vorjahr das Jahr des stärksten Einbruchs der Jagdstrecke für den Fasan in NRW und auch in ganz Nordwestdeutschland.

Dieses Bild wird auch von der Bewertung der Erhaltungszustände der planungsrelevanten Vogelarten Nordrhein-Westfalens bestätigt. Bei den planungsrelevanten Vogelarten handelt es sich um die Arten des Anhangs I der EU-Vogelschutzrichtlinie (VSchRL), Zugvogelarten nach Art. 4 (2) der VSchRL, die Arten der Roten Liste Nordrhein-Westfalens sowie die koloniebrütenden Vogelarten. Die Erhaltungszustände werden mittels einer Ampelbewertung erfasst, die sich an die dreistufige (Grün, Gelb, Rot) Bewertung der Lebensraumtypen und Arten nach der FFH--Richtlinie richtet. Diese Bewertung wird getrennt für die atl. (Flachland) und die kont. Region (Bergland) vorgenommen.

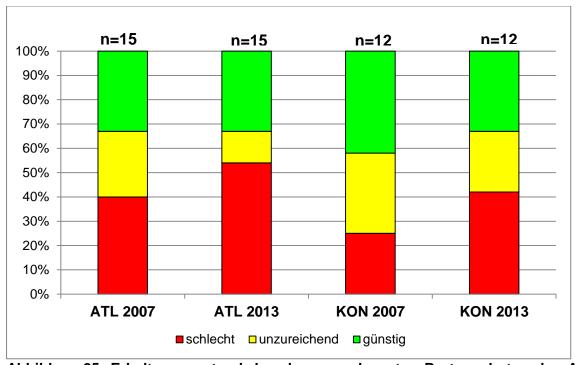


Abbildung 25: Erhaltungszustand der planungsrelevanten Brutvogelarten des Agrarlandes in NRW (ATL = atlantische, KON = kontinentale Region, n = Artenzahl).

Die Abb. 25 vergleicht für die beiden Regionen die Erhaltungszustände 2007 und 2013 für die Arten der Ackerlandschaft. Schon 2007 überwogen die unzureichenden und schlechten Einstufungen, und diese Situation hat sich 2013 noch verstärkt. Einigen wenigen Arten mit günstigem Erhaltungszustand (z.B. Schleiereule und Turmfalke, die Äcker nur zur Jagd nutzen) stehen 54 % Arten mit schlechtem Zustand im Flachland (z.B. die Bodenbrüter Rebhuhn und Grauammer) und 42 % im Bergland gegenüber. Die Unterschiede zwischen den beiden Regionen sind nur gering.

Die Gründe für den Rückgang der Vögel des Ackerlandes sind gut bekannt. Sie sind im Einzelnen bei der Antwort auf die Frage 78 dargelegt. Die dort zitierte Publikation der Deutschen Ornithologen-Gesellschaft und des Dachverbandes Deutscher Avifaunisten (2011) enthält detaillierte Literaturhinweise für die Einzelursachen.

Säugetiere

Der in Bezug auf die zu Frage 78 genannten Belastungsfaktoren etwas weniger empfindliche Feldhase wurde erst 1999 in die Rote Liste NRW aufgenommen und in Kategorie 3 gelistet. In der 4. Fassung 2011 wurde unter Verweis auf eine Zunahme in den Jahren 2001 bis 2006 lt. WILD-Jahresbericht 2006 eine Rückstufung in die Kategorie V (Vorwarnliste; keine Rote-Liste-Kategorie im engeren Sinne) vorgenommen.

In Nordrhein-Westfalen haben sich die Bestände des Feldhamsters in den letzten Jahren weiter negativ entwickelt. Von den noch drei bekannten autochthonen Populationen (Rommerskirchen, Pulheim und Zülpich) müssen zwei als erloschen betrachtet werden, die dritte steht derzeit an der Grenze des Aussterbens. In den Vorkommensgebieten Pulheim und Rommerskirchen liegt der Bestand unter der Nachweisgrenze. Im Vorkommensgebiet Zülpich ist nach zwischenzeitlicher Bestandserholung (bis 2010) die Population in den letzten Jahren stark rückläufig. Im Frühjahr 2014 konnten dort nur noch 25 Baue gezählt werden. Ein Bestand von unter 50 Tieren gilt im Freiland als kritische Größe. Die Bemühungen in den letzten 10 Jahren, den Erhaltungszustand des Feldhamsters durch Fördermaßnahmen im Rahmen des Vertragsnaturschutzes zu verbessern oder zumindest zu erhalten, haben bisher nicht dauerhaft zu dem gewünschten Erfolg geführt.

<u>Ackerwildkräuter</u>

Landesweit sind fast 41 % der Ackerwildkräuter (98 von 241 Arten und Unterarten) in der aktuellen Roten Liste der Farn- und Blütenpflanzen 2010 aufgeführt, hiervon gelten 25 Arten als ausgestorben oder verschollen. Besonders gefährdet sind die charakteristischen Arten der Getreideäcker.

Beim Vergleich der Roten Listen der Farn- und Blütenpflanzen 1986, 1999 und 2010 zeigt sich bilanzmäßig eine Verschlechterung der Gefährdungssituation von Ackerwildkräutern in NRW. Während vor allem viele "Allerweltsarten" mit ihren Vorkommen insbesondere auf Hackfruchtäckern auch aktuell nicht gefährdet sind, hat sich die Gefährdungssituation für die meisten bereits 1986 als mindestens gefährdet eingestuften Arten seitdem nicht verändert. Drei Arten wurden in der Roten Liste 1999 nur zwischenzeitlich günstiger eingestuft. 16 Arten, unter ihnen vier Wiederfunde, konnten 2010 gegenüber 1986 als geringer gefährdet eingestuft werden. Dem gegenüber stehen 23 Arten, deren Gefährdungssituation sich gegenüber 1986 verschlechtert hat. Hierunter befinden sich auch fünf Arten, die in der Roten Liste 1986 noch als gefährdet vermerkt waren, aktuell jedoch als ausgestorben oder verschollen angesehen werden müssen.

Regional gibt es bei der Entwicklung in den einzelnen Großlandschaften erhebliche Unterschiede. Während sich die Situation der Ackerwildkraut-Arten in der Niederrheinischen Bucht

und in der Eifel / Siebengebirge seit 1986 insgesamt betrachtet kaum verändert hat, ist die Zunahme der Gefährdung in allen anderen Großlandschaften bezogen auf die dort vorkommenden Ackerwildkrautarten größer als im Landesdurchschnitt. Im Niederrheinischen Tiefland wurden 2010 im Vergleich zu 1986 insgesamt 21 Arten als stärker gefährdet oder verschollen eingestuft gegenüber neun geringer gefährdeten bzw. wiedergefundenen Arten. In der Westfälischen Bucht sind dies sogar 36 stärker gegenüber zehn geringer gefährdeten, im Weserbergland 38 Arten gegenüber lediglich vier geringer gefährdeten Arten, im Süderbergland 27 Arten, die erloschen oder stärker gefährdet sind gegenüber 16 Arten mit geringerer Gefährdung im Vergleich zu 1986.

In nachfolgender Abb. 26 werden für den Nutzungstyp "Acker" die Ergebnisse der einzelnen Parameter für die Agrarumwelt-Maßnahme "Ökologischer Landbau" sowie die zusammengefassten Pakete des Vertragsnaturschutzes gegenübergestellt. Weitere Vergleichsdaten stellen die Ackerflächen ohne jedwede Maßnahme sowie die Ackerflächen in ÖFS-Referenzflächen in Naturschutzvorranggebieten (hier: Vogelschutzgebiet Medebacher Bucht) dar. Die VNS-Ackerflächen stammen nicht aus der ÖFS. Auch der jeweilige Mittelwert für alle Ackerflächen in NRW wird zusätzlich dargestellt. Er entspricht dem konventionellen Landbau, da dieser anteilsmäßig sehr stark dominiert.

Abbildung 26: Mittlere Anzahl von Ackerwildkrautarten auf Ackerflächen in NRW im Jahre 2012.

Die Ackerbegleitflora wird von einjährigen Arten beherrscht, d.h. die Überwinterung erfolgt in erster Linie in Form von Samen. Entsprechend den Anbaumethoden haben sich spezielle Ackerwildkraut-Gesellschaften entwickelt. In der konventionellen Landwirtschaft erfolgt die möglichst vollständige Bekämpfung der Ackerbegleitflora ganz oder überwiegend mittels Herbizideinsatz. Im Gegensatz dazu werden im Ökolandbau in erster Linie mechanische Methoden zur Verdrängung der Ackerwildkräuter angewendet. Im Vertragsnaturschutz ist allen Bewirtschaftungspaketen ein Verbot der (chemischen) Ackerwildkraut-Bekämpfung gemein. Die mittlere Anzahl der Ackerwildkräuter ist einerseits ein Gradmesser für den na-

turschutzfachlichen Wert von Äckern. Andererseits gilt sie als wichtiger Indikator für die Habitateignung zahlreicher Tiergruppen wie z.B. Insekten, Brutvögel und Säugetiere.

Im ökologischen Landbau bewirkt die ausschließlich mechanische Wildkrautbekämpfung ein höheres Arten-Vorkommen. Erst im Vertragsnaturschutz, bei dem die Bewirtschaftung gezielt auf das Artenschutzziel ausgerichtet wird, zeigt sich das ganze Potential für die Artenvielfalt. Die mittlere Anzahl der Wildkräuter auf Äckern steigt hier um das Dreifache.

84. Welche Insekten-, Vogel- und Niederwildarten der Ackerbau- und Grünlandregionen in Nordrhein-Westfalen sind durch die Anwendung von Pflanzenschutzmitteln in besonderem Maß gefährdet?

Eine Gefährdung der genannten Artengruppen durch die Anwendung von PSM muss durch direkte (letale und subletale Wirkungen) und indirekte Auswirkungen (lebensraumverändernde Wirkungen, teilweise Auswirkungen bis in die Nahrungsnetze) betrachtet werden. Diese Fragestellung wurde mit Frage 79 beantwortet. In Verbindung mit der Antwort auf die Fragen 82 und 83 ergeben sich folgende Arten(gruppen), die insbesondere durch die Anwendung von PSM gefährdet sein können.

Insektenarten

Insektenarten können durch direkte und indirekte Wirkungen betroffen sein. Zu den Artengruppen, die in NRW durch PSM-Anwendung besonders gefährdet sind, gehören diejenigen, die durch ihre Lebensweise insbesondere den direkten Wirkungen ausgesetzt sind (bodenbewohnende Artengruppen und bei systemischen PSM auch pflanzenfressende bzw. Nektar nutzende Artengruppen). Lebensraumverändernde Wirkung zeigen auch mechanische Unkraut-Behandlungsmethoden.

Für die bodenbewohnenden Artengruppen können exemplarisch die Laufkäfer benannt werden, hier sind 32 % der "Acker-Arten" inzwischen als gefährdet anzusehen. Durch die Anwendung von PSM können alle diese Arten direkt betroffen sein, insbesondere gilt dies für die aktuell vom Aussterben bedrohten Arten Callistus lunatus (Mondfleck-Läufer), Pterostichus macer (Herzhals-Grabläufer) und Brachinus explodens (Bombardierkäfer).

Für die in der Roten Liste bearbeiteten Artengruppen mit pflanzenfressenden und/oder Nektar nutzenden Arten können die Heuschrecken und die Schmetterlinge exemplarisch herangezogen werden. In der ersten Gruppe sind insbesondere die Feuchtwiesenarten Chorthippus dorsatus (Wiesengrashüpfer) und Ch. montanus (Sumpfgrashüpfer) nach den Angaben in der Roten Liste (auch) durch die Anwendung von PSM in besonderem Maße gefährdet. Für die Schmetterlinge können hier exemplarisch (analog zu den Laufkäfern) die aktuell vom Aussterben bedrohten bzw. aufgrund ihrer Seltenheit nicht bewerteten Arten Acherontia atropos (Totenkopfschwärmer), Colias croceus (Postillon), Maculinea nausithous sowie M. teleius (Wiesenknopf-Ameisenbläulinge) und Pontia daplidice (Resedaweißlings-Komplex) benannt werden.

Vogelarten

In der Antwort auf Frage 79 wurde bereits deutlich gemacht, dass bei den Vogelarten insbesondere die insektenfressenden Arten durch die Verwendung von PSM betroffen sein können. Durch die Auswertung der aktuellen Roten Liste und den Vergleich mit den Vorgänger-Listen (siehe Antwort auf die Fragen 82 und 83) kann gefolgert werden, dass hier insbesondere die während der Jungenaufzucht obligat auf Insektennahrung angewiesenen und gleichzeitig beständig zurückgehenden Arten Feldlerche, Feldsperling, Grauammer, Ortolan und Kiebitz betroffen sind.

Abbildung 27: Brutbestandsentwicklung des Rebhuhns in NRW auf Basis der Ökologischen Flächenstichprobe (ÖFS).

In der Roten Liste NRW wird das zum Niederwild gerechnete **Rebhuhn** in den letzten Jahren als stark gefährdet geführt, eine weitere Abnahme ist durch die Zahlen der ÖFS jedenfalls plausibel. Das Kükenfutter von Rebhühnern besteht in erster Linie aus Insekten, eine indirekte Beeinträchtigung wie bei den anderen Vogelarten ist daher plausibel anzunehmen. Der Zusammenhang von PSM-Einsatz, Nahrungsverfügbarkeit, Brut und Populationsgröße ist für das Rebhuhn durch Untersuchungen in England gut belegt. Die Zahl der Rebhühner ist negativ mit der Anzahl der Anwendungen von Herbiziden pro Feld und positiv mit der Anzahl zweikeimblättriger Unkräuter korreliert. Der Rückgang der Populationen des Rebhuhns ist europaweit drastisch. Vergleichbar umfangreiche Studien einschließlich Langzeitstudien wie für das Rebhuhn gibt es in der überschauten Literatur für andere Vogel- und Säugetierarten nicht (UBA 2014).

Rohrweihe und vor allem Wiesenweihe nutzen als Hauptnahrung Kleinsäuger (vor allem Feldmäuse). Ein Einsatz von Rodentiziden wirkt sich für diese Arten direkt auf die Nahrungsverfügbarkeit aus und beeinflusst somit auch den Bruterfolg direkt.

Säugetiere

Die Populationen der Feldhasen (ebenfalls zum Niederwild zählend) sind kontinuierlich rückläufig. Seit 2010 ist der Rückgang beschleunigt. Die Qualität der verfügbaren Nahrung ist für den Gesundheitsstatus von Feldhasen von entscheidender Bedeutung. Auch für den Feldhasen zeigen die Jagdstrecken – als Maß für den in den einzelnen Jahren realisierten, jagdlich nachhaltig nutzbaren Zuwachs der Hasenpopulationen – seit etwa Mitte der 1980er Jahre deutlich nach unten; inzwischen werden die niedrigsten Werte seit 1950 verzeichnet (2012/13: 96.855). Inwieweit diesbezüglich neben den Faktoren Lebensraum/Landwirtschaft

und Prädation auch Krankheiten bzw. Beeinträchtigungen der Fitness von Jung- und/oder Althasen z.B. in Folge von Kontamination mit PSM eine Rolle spielen, bedarf noch einer weiteren Klärung.

Neben den beschriebenen Insekten-, Vogel- und Niederwildarten ist der Feldhamster als Nagetier durch den Einsatz von Rodentiziden direkt betroffen. In Feldhamster-Vorkommensgebieten wird daher versucht, mit Mitteln des Vertragsnaturschutzes den Einsatz von PSM auf einen Einsatz pro Jahr zu begrenzen.

85. Welche Möglichkeiten hat die Landesregierung, einer möglichen Gefährdung der Biodiversität durch die Anwendung von Pflanzenschutzmitteln entgegen zu wirken?

Wie in der Antwort zu Frage 84 dargelegt, kann jegliche Anwendung insbesondere von Insektiziden - aber auch von Herbiziden – negative Effekte auf die Biodiversität haben, wobei insbesondere die indirekten Effekte überwiegen. Die Möglichkeiten der Landesregierung, diesen Effekten entgegen zu wirken, liegen vorrangig in der Förderung von Bewirtschaftungsweisen, in denen vollständig oder weitgehend auf die Anwendung solcher PSM verzichtet wird (wie z.B. dem Öko-Landbau) und der Förderung von unbehandelten Flächen-, Linien-, Saum- und Randstrukturen mit Wiederbesiedlungs- und Rückzugsfunktion (z.B. Brachen, Blühstreifen, Uferrandstreifen). In Schutzgebieten des Naturschutzes (NSG, FFH, VSG) besteht grundsätzlich die Möglichkeit der Einschränkung oder des Verbotes der Anwendung von PSM durch Rechtsverordnung. Im Rahmen des Vollzuges des Pflanzenschutzrechts sind lediglich in speziell gelagerten Einzelfällen bei konkret anzunehmender Gefährdung geschützter Arten Anordnungen der zuständigen Behörde (DLWK) möglich.

86. In welchem, Umfang haben sich Randstrukturen und Saumbiotope in der Agrarlandschaft seit 1990 verändert?

Saumbiotope sind in der Agrarlandschaft auf Randbereiche landwirtschaftlicher Parzellen zumeist entlang von Wirtschaftswegen, Gräben und anderen Gewässern konzentriert. Durch die Entwidmung (Aufhebung) von Wegen, das Befestigen von landwirtschaftlichen Wegen, z.T. auch die beabsichtigte oder unbeabsichtigte Inanspruchnahme und Umwandlung von Wegrainstrukturen in Acker hat sich deren Anzahl und Fläche reduziert. Die stete Zusammenlegung von Bewirtschaftungseinheiten mit einhergehender Vergrößerung der Parzellen trägt ebenfalls zur Verminderung von Randstrukturen bei. Der Umfang der Verluste seit 1990 kann für Nordrhein-Westfalen jedoch nicht quantifizierbar belegt werden.

Neben dem Flächenverlust (quantitative Verluste) leidet die wichtige Funktion der Säume für die biologische Vielfalt auch unter der zunehmenden Eutrophierung der Landschaft (qualitative Verluste, siehe auch Antwort auf die Frage 92) mit der Folge einer allgemeinen Nivellierung. Dieser Qualitätsverlust zeigt sich in einer Zunahme von Stickstoff bevorzugenden Pflanzenarten und einer gleichzeitigen Abnahme konkurrenzschwacher Arten. Magere und damit artenreichere Randstrukturen und Säume in der Agrarlandschaft sind heute nur selten zu finden.

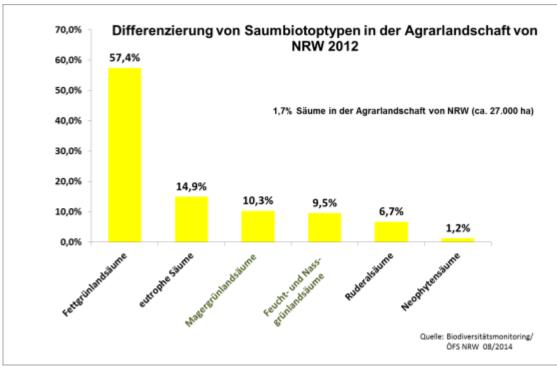


Abbildung 28: Differenzierung von Saum-Biotoptypen in der Agrarlandschaft von NRW im Jahre 2012

Aktuell besteht der Großteil der Säume, nämlich rund 72 %, aus artenarmen Fettgrünlandund eutrophen Säumen. Weitere verteilen sich auf Ruderal- und Neophytensäume mit 8 %. Lediglich ca. 20 % entfallen auf die naturschutzfachlich wertvolleren artenreichen mageren und feuchten Säume.

87. Liegen der Landesregierung wissenschaftliche Erkenntnisse vor, ab welcher Größe Ackerrandstreifen und Saumbiotope Biodiversitätsverluste durch intensive Landwirtschaft verhindern können?

Die Frage nach der notwendigen Größe von Ackerrandstreifen und Saumbiotopen umfasst zwei Aspekte, nämlich einerseits die Mindestbreite des einzelnen Streifens/Saumbiotops und andererseits der Mindestflächenanteil solcher Strukturen in der Agrarlandschaft. Neben der Breite und dem Flächenanteil von Saumstrukturen in der Agrarlandschaft sind aber auch andere Faktoren entscheidend dafür, ob sie für den Erhalt der Biodiversität wirksam sind. Dazu gehören beispielsweise ihre Lage (z. B. in offener Landschaft oder am Waldrand), ihre Anordnung (im günstigsten Fall mosaikartig), die Art und Intensität der angrenzenden Flächenbewirtschaftung, die Bodenverhältnisse oder die Landschaftsstruktur im betrachteten Raum. Die folgenden Ergebnisse werden unter dem Vorbehalt dargestellt, dass diese Rahmenbedingungen bei den meisten Untersuchungen, die sich mit diesem Thema beschäftigen, nicht bekannt sind.

Die vorliegenden Erkenntnisse zeigen, dass Breiten von 3 bis über 12 m (je nach Organismengruppe) bei einem Flächenanteil von mindestens 5 - 10 % in Form von (selbstbegrünten oder eingesäten) Ackerbrachen, Ackerrandstreifen, Säumen und weiteren Lebensraumelementen in der Agrarlandschaft geeignet sind, um Biodiversitätsverlusten durch intensive Landwirtschaft entgegenzuwirken. Es sind umso höhere Anteile erforderlich, je ungünstiger die Lebensraumbedingungen aufgrund hoher Bestandsdichten der Kulturen und geringer

Fruchtartendiversifizierung sind. Ferner ist auf die Kombination und räumliche Verteilung unterschiedlicher Strukturen zu achten. Wichtige Komponenten sind dauerhafte und Rotations-Ackerbrachen und Grasstreifen, die miteinander zu kombinieren sind. Von besonderer Bedeutung ist der dauerhafte Erhalt solcher Strukturen.

Diese Erkenntnisse wurden bereits bei der Ausgestaltung der AUM und des Vertragsnaturschutzes des Landes Nordrhein-Westfalen beachtet. Die räumliche Kombination der unterschiedlichen Programmbausteine unter Berücksichtigung verschiedener Rahmenbedingungen ist möglich.

Saumbiotope in der Agrarlandschaft erfüllen verschiedene Funktionen für die Pflanzen- und Tierwelt, zum Beispiel:

- Wuchsort für Pflanzenarten, die in den intensiv bewirtschafteten Acker- und Grünlandflächen nicht wachsen können,
- Lebensraum für Wirbellose, die auf diese Pflanzenarten angewiesen sind,
- Nahrungshabitat für Kleinsäuger und Vögel der Agrarlandschaft,
- Deckung und damit Schutz vor Prädatoren für Kleinsäuger und Vögel,
- Bruthabitat für Vögel.

Bei der Beurteilung notwendiger Mindestbreiten und -flächenanteile von Ackerrandstreifen und Saumbiotopen ist es aus fachlichen Gründen notwendig, das Augenmerk auf empfindliche und hochintegrative Komponenten des Agrarökosystems zu richten. Vögel sind grundsätzlich gut als Indikatorarten geeignet; eine wichtige Leitart in diesem Sinne ist das Rebhuhn (Perdix perdix). Sein Nahrungsspektrum, seine Lebensraumansprüche und sein Territorialverhalten machen es diesbezüglich zu einem umfassenden Bioindikator.

Für die Populationssicherung ist eine dauerhaft ausreichende Brutpaardichte entscheidend. Diese ist in der heutigen Agrarlandschaft vorrangig abhängig von dem Anteil an Saumstrukturen. 12 m breite Dauerbrachestreifen mit beidseitig angrenzenden, jeweils 3 m breiten Schwarzbrachestreifen erwiesen sich als wirksam zur Erhöhung des Rebhuhnbestandes (Spittler, H. 2000: Niederwildgerechte Flächenstilllegung. Mitteilungen der Landesanstalt für Ökologie, Bodenordnung und Forsten NRW 25, 1/2000: 12-19). Auch andere Untersuchungen kommen zu dem Schluss, dass sich feldrainähnliche Streifen von 4 m Breite mit angrenzenden, ebenfalls 4 m breiten Pufferstreifen ohne Düngung und PSM - optimal ab einer Streifenlänge von ca. 8 km pro Quadratkilometer - positiv auf den Brutpaarbestand des Rebhuhns auswirken. Insbesondere bei bodenbrütenden Vögeln ist in Bezug auf die Breite von Saumstrukturen auch der Faktor Prädation zu berücksichtigen. Bodenprädatoren wie Fuchs oder Marder bewegen sich in der Landschaft bevorzugt entlang von Randlinien, z. B. am Ackerrand oder entlang der Fahrspuren im Acker. In sehr schmalen Saumstrukturen können Beutetiere von ihnen sehr leicht aufgespürt werden und es kann zu einem "Falleneffekt" kommen. In breiteren Säumen ist die Auffinde-Wahrscheinlichkeit durch Prädatoren für Arten wie das Rebhuhn deutlich geringer.

Kleinere Organismen können oft bereits von weniger breiten Strukturen profitieren als größere. Andere stellen bei Spinnen der Krautschicht bei einer Rainbreite von bis zu 5 m zunehmende Artenzahlen fest, bei einer Breite über 5 m stiegen die Artenzahlen dagegen kaum noch an.

Aus floristischer Sicht hat insbesondere die Pflege von Säumen, aber auch die Bewirtschaftung der an Säume und Ackerrandstreifen angrenzenden Flächen eine deutlich höhere Be-

deutung für die Artenvielfalt als deren Breite. Aus floristischer Sicht wird als sinnvolle Mindestbreite für Ackerraine 3 Meter angegeben, je nach Pflege und Bewirtschaftung der Nachbarflächen kann jedoch auch eine etwas geringere Breite ausreichend sein (vgl. Link, Michael & Harrach, Tàmas 1998: Artenvielfalt von Gras- und Krautrainen: Ermittlung einer Mindestbreite aus floristischer Sicht. Naturschutz und Landschaftsplanung 30(1): 5-9). Bei sehr intensiv mit Dünge- und PSM behandelten Acker- oder Grünlandflächen sind demnach breitere Raine notwendig als bei weniger intensiv bewirtschafteten Flächen.

Auch zu Mindestflächenanteilen von Säumen, Ackerrandstreifen, Brachen und anderen Lebensraumelementen ("Ökologische Vorrangflächen") in der Agrarlandschaft für das Rebhuhn und andere Vogelarten liegen Studien vor. In der Literatur werden Mindestwerte um 10 % angegeben. Dies bestätigen auch die Handlungsempfehlungen aus dem durch das BfN geförderten F&E-Vorhaben "Reform der Gemeinsamen Agrarpolitik (GAP) 2013 und Erreichung der Biodiversitäts- und Umweltziele". In der Schweiz sind sogar 14 % qualitativ hochwertige Maßnahmenflächen (AUM) und halbnatürliche Habitate in der Agrarlandschaft als notwendig erachtet, um den Rückgang der Agrararten aufzuhalten und umzukehren. Die Reviere der untersuchten Agrarvogelarten Feldlerche, Grauammer und Goldammer waren in einem Untersuchungsgebiet in Brandenburg in Bereichen mit überdurchschnittlich hohen Anteilen an Ackerbrachen (6 bis 33 %) signifikant erhöht. Auch in einer Untersuchung der Forschungsstelle für Jagdkunde und Wildschadenverhütung (FJW) in den Jahren 1995-1999 in der Zülpicher Börde konnte über die Anlage von Dauer- und Schwarzbrachestreifen mit einem Flächenanteil von 7 % eine Bestandserhöhung des Rebhuhns erreicht werden. Dementsprechend empfiehlt auch der Leitfaden "Umsetzung des Artenschutzes gemäß § 44 Abs. 4 BNatSchG in der Landwirtschaft in Nordrhein-Westfalen" des MKULNV (2013) den Erhalt und die Entwicklung von Lebensräumen auf mindestens 5 % der betrieblichen Ackerfläche in den Vorkommensgebieten bzw. 10 % in den Populationszentren der Agrarvogelarten durch Anlage von z. B. Brachen und Ackerrandstreifen (http://www.naturschutzinformationennrw.de/artenschutz/de/downloads).

88. Welche Biodiversitätsverluste sind nach Erkenntnissen der Landesregierung auf landwirtschaftlich genutzten Flächen seit 1990 festzustellen? Gibt es regionale Unterschiede?

An dieser Stelle wird auf die Antworten zu Fragen 80/81, 82/83 und 86 verwiesen.

Biodiversitätsverluste in der Agrarlandschaft lassen sich darüber hinaus seit dem Jahr 2009 auch über den europäischen Pflichtindikator HNV darstellen, Verluste vor 2009 lassen sich nicht quantifizieren. Der Indikator dokumentiert den Zustand und die Entwicklung von höherwertigen Flächen und Strukturen in der Agrarlandschaft. Hiermit können grundsätzlich Erfolge, aber auch Rückschläge bei den Bemühungen, den allgemeinen Biodiversitätsverlust in der Agrarlandschaft aufzuhalten, abgebildet werden.

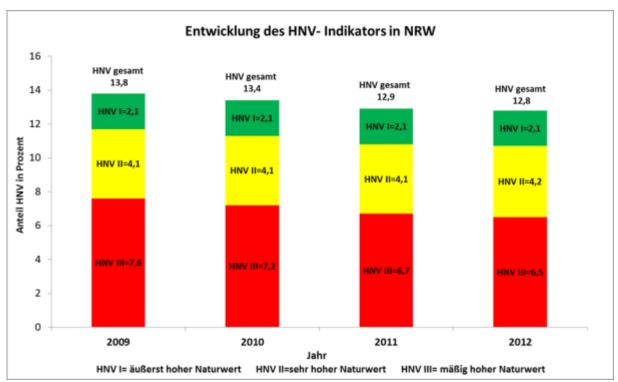


Abbildung 29: Entwicklung des NRW-HNV-Indikators von 2009 bis 2012 (HNV I: äußerst hoher Naturwert, HNV II: sehr hoher Naturwert, HNV III: mäßig hoher Naturwert).

Der Wert des HNV-Indikators ist in NRW bis zum Jahr 2012 gegenüber der Ersterfassung 2009 stetig gesunken. Insgesamt handelt es sich innerhalb von vier Jahren um einen Verlust von 1 Prozentpunkt auf 12,8 % höherwertiger Strukturen und Agrarflächen an der Agrarlandschaft. In die Fläche umgerechnet bedeutet dies einen Verlust wertvoller, relativ extensiv genutzter Flächen und Strukturen in der vorwiegend intensiv genutzten Agrarlandschaft von rund 16.000 ha. Während landesweit betrachtet der Flächenanteil mit äußerst hohem bzw. sehr hohem Naturwert (Stufe I und II) in den vier Untersuchungsjahren auf niedrigem Niveau stagniert, nimmt ihr Anteil an dem mäßig hohem Naturwert (Stufe III) kontinuierlich ab.

Es gibt deutliche regionale Unterschiede: In der atl. Region (Flachland, rund 56 % an der Gesamtfläche von NRW) schlagen die niedrigen HNV-Anteile von nur mehr 9,3 % an der Agrarlandschaft im Jahre 2012 besonders stark zu Buche. Deutlich bessere HNV-Werte erzielt die kont. Region (44 Prozentanteile an der Gesamtfläche von NRW) mit 18,9 % im Vergleichsjahr 2012. Allerdings zeichnen sich hier seit 2009 tendenziell ebenfalls Verluste ab (ÖFS NRW).

Wie in den Antworten zu den Fragen 79 und 84 bereits dargelegt und durch die Roten Listen belegt, sind seit den 1990er Jahren zahlreiche Arten landwirtschaftlich genutzter Flächen zurückgegangen.

Nachfolgende Abb. 30 stellt die Bestandsentwicklung von 15 repräsentativen Brutvogelarten in der Agrarlandschaft anhand des europäischen Indikators "Farmland-Bird-Index" (FBI) dar. Dieser Indikator bildet ein für die Feldflur charakteristisches Artenkollektiv von Brutvögeln ab, wobei auf europäischer Ebene für Deutschland insgesamt 18 typische Offenland-Vogelarten benannt wurden. Der FBI-Indikator umfasst neben den Arten der Agrarlandschaft, die sowohl ihr Brut- als auch Nahrungshabitat dort finden, auch Teilsiedler der Agrarlandschaft wie z.B. den Girlitz und zeigt sehr deutlich anhand der Bestandsentwicklungen der charakteristischen

Brutvogelarten die Biodiversitätsverluste in der Agrarlandschaft seit dem Jahr 2000 (Basis-jahr 2000: Index = 100).

Auffallend ist nach einer Abnahme von 2000 bis 2006 ein vorübergehender leichter Anstieg des Wertes von 2007 bis 2009, um ab 2010 wiederum kontinuierlich abzunehmen. Als Hauptursache hierfür muss die ab 2008 auslaufende obligatorische Flächenstilllegung von Ackerflächen im Rahmen der GAP angesehen werden, die sich negativ auf Bestandsentwicklungen von Feldvögeln durch Habitatverluste infolge wegfallender Ackerbrachen auswirken. Aktuell waren in NRW im Jahre 2013 noch 0,4 Prozent Ackerbrachen in der Agrarlandschaft vorhanden.

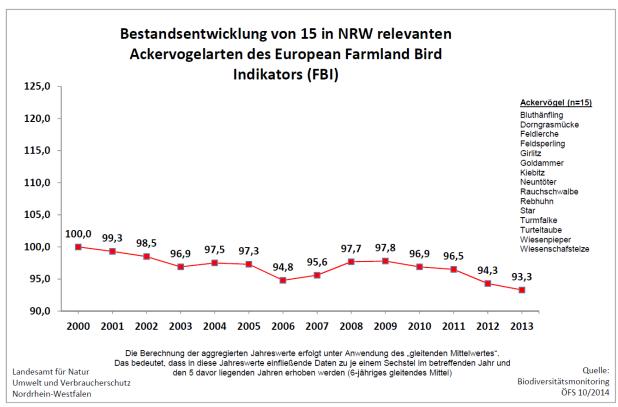


Abbildung 30: Bestandsentwicklung von 15 in NRW relevanten Ackervogelarten des European Farmland Bird Indikators(FBI)

89. Wie werden von der Landesregierung die bestehenden Landschaftselemente NRW erfasst und dokumentiert?

Die Landesregierung betreibt keine flächendeckende Erfassung und Dokumentation der bestehenden Landschaftselemente.

Landschaftselemente, die zugleich Geschützte Biotope gemäß § 30 BNatSchG bzw. § 62 Landschaftsgesetz NRW sind, werden vom LANUV festgestellt und dokumentiert.

Im Rahmen der CC-Verpflichtungen werden Landschaftselemente durch den DLWK erfasst und dokumentiert. In diesen Datenbestand fließen auch Landschaftselemente, die zugleich Geschützte Biotope sind, durch nachrichtliche Übernahme aus dem Datenbestand des LA-NUV ein. Hintergrund der Erfassung der Landschaftselemente im Rahmen der CC-Verpflichtungen ist, dass Inhaber landwirtschaftlicher Betriebe, die einen Antrag auf Erhalt

von Direktbeihilfen (Betriebsprämie) stellen oder an flächengebundenen AUM teilnehmen, zur Einhaltung der CC-Bestimmungen verpflichtet sind. Betriebe, die keine Betriebsprämie erhalten und nicht an flächengebundenen AUM teilnehmen, unterliegen nicht den CC-Verpflichtungen; hier erfolgt auch keine Erfassung von bestehenden Landschaftselementen.

CC-relevante Landschaftselemente, die im Sinne des § 2 Abs. 2 des DirektZahlVerpflG nicht beseitigt werden dürfen, sind Hecken, Baumreihen, Feldgehölze, Feuchtgebiete mit einer Größe von höchstens 2000 Quadratmetern, als Naturdenkmäler geschützte Einzelbäume, Feldraine, Trocken- und Natursteinmauern, Lesesteinwälle sowie Fels- und Steinriegel. Der DLWK hat in seiner Funktion als EU-Zahlstelle ein spezielles GIS-Referenzsystem für die CC-relevanten Landschaftselemente aufgebaut. Derzeit umfasst dieses System insgesamt rund 75.000 Landschaftselemente. Fast 95 % hiervon entfallen auf Hecken, Baumreihen und Feldgehölze. Erfasst sind allerdings nur die Landschaftselemente, die im oben genannten Katalog aufgeführt sind und über die der Landwirt Verfügungsgewalt hat. So ist beispielsweise eine Baumreihe – als Straßenbegleitgrün auf dem öffentlichen Straßengrundstück stehend und direkt an eine landwirtschaftliche Fläche angrenzend - hier nicht erfasst.

90. Welche Erkenntnisse und Entwicklungstendenzen ergeben sich für die Landesregierung aus der langfristigen Erfassung und Dokumentation der Landschaftselemente in NRW?

Der Landesregierung liegen hierzu keine Erkenntnisse vor. Das LANUV betreibt keine Auswertungen der Landschaftselemente. Die sehr geringen CC-Beanstandungsquoten bezüglich der Landschaftselemente mit unter 1 % der kontrollierten Fälle, die seit 2005 im Rahmen der systematischen CC-Kontrollen durchgeführt werden, lassen erkennen, dass bei den so erfassten Elementen Stabilität besteht. Es können allerdings keine Rückschlüsse auf Entwicklungstendenzen (quantitativ und qualitativ) für die Landschaftselemente in NRW insgesamt gezogen werden.

91. Welche Folgen hat der Maisanbau für die Artenvielfalt?

Insgesamt wurden in Nordrhein-Westfalen 2013 auf 284.424 ha Mais angebaut. Dies entspricht einem Anteil von rund 26,7% an der gesamten Ackerfläche. Insgesamt ist die Maisanbaufläche in den letzten 15 Jahren um ca. 55.000 ha angestiegen und stagniert aktuell auf diesem Niveau. Die Zunahme der letzten Jahre geht zu Lasten des Anbaus anderer Feldfrüchte und zumindest in der Vergangenheit in hohem Maße auf Kosten des Grünlandes. Aufgrund der Selbstverträglichkeit wird teilweise auf der gleichen Fläche mehrere Jahre hintereinander Mais angebaut. Je nach Witterung entwickelt sich der schnellwachsende Mais zu hohen und dichten Pflanzenbeständen.

Als Lebensraum ist der Maisacker für charakteristische Arten der Feldflur wie die Feldlerche und Kiebitz bestenfalls zu Beginn der ersten Wuchsphase attraktiv. Anhand einer Habitatanalyse im Rahmen der Auswertung der ÖFS konnte gezeigt werden, dass Maisäcker für die Feldlerche kaum nutzbar sind.

Hingegen nutzt der Kiebitz häufig Maisäcker im Vorfrühling als scheinbar geeignetes Bruthabitat, da primäre Vorkommensgebiete wie Feucht- und Nassgrünländer heute selten geworden sind. Durch die mehrmalige Maisflächenbearbeitung während der Hauptbrutzeit (Ende März bis Mitte Mai) verlieren viele Kiebitze ihre Erstgelege. Folglich ist die sogenannte "Vermaisung" der Landschaft für den Kiebitz eine ökologische Sackgasse. Die Zahl der Kiebitze nimmt seit Jahren teilweise dramatisch ab. Seine Population hat alleine in den letzten

vier Jahren um 40 % abgenommen. So gab es im Jahre 2010 noch rund 20.000 Brutpaare in NRW, in 2014 waren es nur noch 12.000 Brutpaare.

Sollte sich die Maisanbaufläche weiter vergrößern, wozu momentan keine Anzeichen vorliegen, ist davon auszugehen, dass auch die Bestandszahlen vieler Feldvogelarten weiter abnehmen. Abgeerntete Maisäcker können jedoch eine attraktive Nahrungsquelle für Generalisten wie Krähen, Tauben, Jagdfasane, rastende Kraniche und Gänse darstellen.

In der traditionellen Landwirtschaft haben sich in Jahrhunderten auf Getreide- und Hackfruchtäckern unterschiedliche Wildkrautpflanzen-Gesellschaften entwickelt. Viele Arten dieser Gesellschaften sind heute in der Roten Liste enthalten. Insbesondere durch den weit verbreiteten Herbizid-Einsatz im Mais ist das Vorkommen von wertvollen Ackerwildkräutern in dieser Kultur eher die große Ausnahme. Daher werden auch für Mais keine Verträge im Rahmen des Vertragsnaturschutzes abgeschlossen. Im Rahmen der ÖFS wurden insgesamt 760 Maisäcker in NRW kartiert und bewertet. Lediglich zwei von ihnen wiesen nach der Definition des HNV-Indikator einen höheren Anteil an Ackerwildkräutern und damit einen mäßig hohen Naturwert (HNV III) auf.

92. Welche Auswirkungen haben Stickstoff-Einträge aus landwirtschaftlicher Produktion auf gesetzlich geschützte Biotope und Schutzgebiete sowie Oberflächengewässer?

Auswirkungen auf gesetzlich geschützte Biotope und Schutzgebiete

Ziel von nach § 30 BNatSchG gesetzlich geschützten Biotopen und von Schutzgebieten (v.a. NSG und FFH-Gebieten) ist die Erhaltung der Biodiversität, d.h. der landschaftstypischen Vielfalt an Biotopen/Lebensräumen, Pflanzen- und Tierarten. Neben landschaftsbeanspruchenden Nutzungen und Flächenverlusten können Stoffeinträge eine Beeinträchtigung der biologischen Vielfalt zur Folge haben. Hierzu gehören auch die Stickstoffeinträge aus der Landwirtschaft (Ammoniak/Ammonium), die im Zusammenwirken mit Stickstoffoxiden aus Verbrennungsprozessen (Verkehr, Hausbrand, Industrie, Kraftwerke) dazu geführt haben, dass die tolerierbaren Belastungsgrenzen für eutrophierende Stickstoffeinträge (Critical Loads) in weiten Teilen des Landes bereits überschritten sind, in den Veredlungsregionen (mit einer intensiven Tierhaltung) nicht selten um den Faktor 2 oder 3. Dies bestätigt der Vergleich der vom UBA im Internet bereitgestellten Karte "Vorbelastungsdaten Stickstoff" (http://gis.uba.de/website/depo1/ Siehe auch Antwort zu Frage 7, letzter Spiegelstrich) mit den Critical Loads der FFH-Lebensraumtypen in NRW.

Insbesondere die von Natur aus nährstoffarmen Lebensräume wie z.B. Moore, Heiden, Magerrasen und die Wälder der nährstoffarmen Standorte leiden unter der starken Eutrophierung. Die meisten Arten nährstoffarmer Standorte stehen daher inzwischen auf der Roten Liste der vom Aussterben bedrohten Tier- und Pflanzenarten. Mehr als 70 % der gefährdeten Arten gehören zu den Stickstoffmangelzeigern. Heiden und Magerrasen liegen wie die Moore überwiegend in FFH-Gebieten und sind damit Bestandteil des europäischen Schutzgebietsnetzes NATURA 2000. 37 (von 44) FFH-Lebensraumtypen in Nordrhein-Westfalen gelten als stickstoffempfindliche Lebensräume und müssen daher vor erheblichen Beeinträchtigungen geschützt werden. Der weit überwiegende Teil der in NRW vorkommenden gesetzlich geschützten Biotope ist ebenfalls stickstoffempfindlich.

Der Nährstoffeintrag in Lebensräume und Biotope kann auf mehreren Wegen stattfinden. Einerseits werden Agrarökosysteme wie Grünland zur Produktionssteigerung unmittelbar gedüngt, andererseits können Dünger aus landwirtschaftlichen Nutzflächen über den Boden-Wasser-Pfad in angrenzende Biotope eingeschwemmt werden. Wichtigster Eintragspfad ist

jedoch der Luftpfad, der seit Jahrzehnten ein weit über NRW hinausreichendes Problem darstellt.

Der Eintrag von Nährstoffen (Eutrophierung) in naturnahe Ökosysteme nimmt in erheblichem Umfang Einfluss auf die natürlichen Stoffkreisläufe und Ökosystembeziehungen. Die Stickstoffüberversorgung hat neben dem überdüngenden auch einen langfristig bodenversauernden Effekt. Eutrophierung und Versauerung gehören inzwischen zu den stärksten Einflussfaktoren für den Verlust an Biodiversität. So wird die standorttypische Artenzusammensetzung erheblich verändert, weil nährstofftolerante Arten die konkurrenzschwächeren und auf stickstoffarme Standorte angewiesenen Pflanzenarten verdrängen (häufig Massenausbreitung dominanter nährstoffliebender Arten). Viele Pflanzenarten des artenreichen Grünlandes sind unter stickstoffreichen Bedingungen gegenüber den hochwüchsigen Nutzgräsern nicht konkurrenzfähig. Durch die Nutzungsintensivierung und die zusätzlichen Stickstoffeinträge aus der Atmosphäre wurden die noch bis zur Mitte des 20. Jahrhunderts weit verbreiteten Wiesenblumenarten, inzwischen weitgehend aus dem Grünland verdrängt. Die Ausbreitung von Brennnessel und Brombeere an Wegrändern und in Wäldern, die Vergrasung von Heiden oder der Rückgang von Arten des Grünlandes summieren sich mit anderen Erscheinungen zu einer Verarmung und Vereinheitlichung der Vegetation und damit zu einem Rückgang der biologischen Vielfalt.

Die Veränderung der Standorte und der Vegetation wirkt sich auch auf die Fauna aus. Die Gefährdungssituation variiert in Abhängigkeit von der Tiergruppe. Bei den Tagfaltern/Dickkopffaltern sind 64 von 103 untersuchten Arten (= 62 %) durch den diffusen Nährstoffeintrag und die damit einhergehende Verdrängung ihrer Futterpflanzen in ihrem Bestand gefährdet. Die Verdrängung der Raupenfutterpflanzen führt zur Dezimierung oder zum Erlöschen der Bestände bestimmter Schmetterlingsarten. Dieser Verdrängungsprozess entzieht auch den Bestäuberinsekten die natürliche Lebensgrundlage. Bei den Vögeln sind 38 % der untersuchten Arten (71 von 189) gefährdet. Das Zuwachsen (Vergrasung) offener Bodenstellen in Heiden oder Magerrasen führt z. B. zum Rückgang der Brut- und Nahrungshabitate von Ziegenmelker und Heidelerche. Bei den Heuschrecken sind dagegen nur 15 % (7 von 46 Arten) durch den diffusen Nährstoffeintrag betroffen.

Die aktuelle Belastungssituation, die zu erheblichen Teilen durch Stickstoffemissionen der Landwirtschaft verursacht ist, hat zur Folge, dass das Erreichen der Schutzziele in den Schutzgebieten und in den gesetzlich geschützten Biotopen vielfach in Frage gestellt ist. Eine deutliche Reduzierung der Stickstoffeinträge aus der landwirtschaftlichen Produktion würde einen erheblichen Beitrag zur Erhaltung der landschaftstypischen Biodiversität, leisten. Dies ist jedoch nicht der Einstellung der Düngung auf Äckern oder Grünländern gleichzusetzen. Eine angemessene Düngung beispielsweise der artenreichen Glatthaferwiesen ist sogar notwendig, um diesen Lebensraumtyp zu erhalten.

Auswirkungen chemischer Veränderungen der Grundwasserqualität (bedingt durch landwirtschaftliche Nährstoffeinträge) auf grundwasserabhängige Landökosysteme und auf Oberflächengewässer

Auswirkungen chemischer Veränderungen der Grundwasserqualität auf grundwasserabhängige Landökosysteme mit gesetzlichem Schutzstatus sowie auf Oberflächengewässer, werden im Rahmen der Bewertung der GWK zur Umsetzung der WRRL ausgewertet und bewertet. Bei den grundwasserabhängigen Landökosysteme im Sinne der WRRL handelt es sich um grundwasserabhängige Flächen von FFH-Gebieten, Naturschutz- und Vogelschutzgebieten sowie Nationalparkflächen.

Im aktuellen Monitoringzyklus 2007-2012, welcher dem Bewirtschaftungsplan 2015 zur Umsetzung der Wasserrahmenrichtlinie (hier: Grundwasser) zugrunde liegt, wurden signifikante Auswirkungen chemischer Grundwasserbelastungen auf grundwasserabhängige Landökosysteme landesweit in 33 GWK (von insgesamt 275 GWK) festgestellt. Bei den für grundwasserabhängige Landökosysteme relevanten chemischen Belastungen handelt es sich im Wesentlichen um Nährstoffbelastungen (Stickstoff, Phosphor) aus der Landwirtschaft, die zu einer Eutrophierung und dadurch bedingt zu Artenveränderungen bzw. Biodiversitätsverlusten in den Ökosystemen (u.a. Massenausbreitung dominanter nährstoffliebender Arten) führen.

Oberflächengewässer

Bei den Auswirkungen von Stickstoffeinträgen aus der landwirtschaftlichen Produktion auf Oberflächengewässer muss zwischen den verschiedenen Erscheinungsformen des anorganischen Stickstoffs unterschieden werden.

Ammonium-Stickstoff kann aus Abwässern, aber bei nicht sachgerechter Umgangsweise auch aus Silage- oder Gülleabläufen oder aus frisch ausgebrachter Gülle in die Gewässer gelangen und hat von den anorganischen Stickstoffformen das höchste Schädigungspotenzial für Oberflächengewässer. Einerseits verbraucht die mikrobielle Oxidation des Ammoniums zu Nitrat viel Sauerstoff, so dass sich Sauerstoffmangelzustände im Gewässer ergeben können. Andererseits kann sich unter bestimmten Bedingungen aus Ammonium giftiges Ammoniak bilden, das zu akuten Fisch- und Wirbellosensterben führen kann. Solche Fälle treten bei lokalen Ammoniumeinträgen auf.

Nitrit-Stickstoff ist ein Zwischenprodukt der mikrobiellen Oxidation des Ammoniums und besitzt eine gewisse Giftigkeit vor allem für Fische. Allerdings häuft es sich selten in giftigen Konzentration an, so dass nitrit-bedingte Fischsterben praktisch nicht auftreten.

In der Regel liegt der weitaus größte Anteil der anorganischen Stickstoffverbindungen in Oberflächengewässern in Form von Nitrat vor. Nitrat ist für die Süßwasserbiozönosen vergleichsweise unschädlich und nicht toxisch. In "natürlichen" Gewässern liegt die Nitratkonzentration in der Regel deutlich unter 15 mg/l. Es wird aber im Binnenland wegen seiner potenziellen Auswirkungen auf das Trinkwasser auf einen Wert von 50 mg/l Nitrat begrenzt. Außerdem wirkt Nitrat eutrophierend auf die Küstenwasserkörper der Meere und kann dort zur Massenentwicklung von Algen führen.

In den Oberflächengewässern des Binnenlandes haben die anorganischen Stickstoffverbindungen (im Gegensatz zum Phosphat) dagegen keine relevanten Auswirkungen auf die Trophie der Gewässer. Die in der Regel hohen Stickstoffkonzentrationen der Oberflächengewässer sorgen dafür, dass das gesamte Phosphatangebot durch Algen und höhere Wasserpflanzen ausgenutzt werden kann (Phosphat als "limitierender Faktor"). Massenentwicklungen von Algen werden daher vor allem durch höhere Phosphatkonzentrationen gefördert.

Bei den Oberflächenwasserkörpern hat das landesweite Monitoring nach der WRRL gezeigt, dass viele Gewässer mit Nährstoffen belastet sind, mit einem Schwerpunkt im landwirtschaftlich intensiver genutzten Flachland. Dies trifft insbesondere für die Orientierungswerte für Phosphor zu. Seltener sind die hier nachgefragten Stickstoff-Parameter (Ammonium-Stickstoff und Nitrat-Stickstoff) betroffen.

Modellbasierte Abschätzungen der Nährstoffeinträge in die Oberflächengewässer Nordrhein-Westfalens zeigen, dass bei Stickstoff-Belastungen die Landwirtschaft der wichtigste Verursacher ist. Von insgesamt 90.000 t N-Eintrag pro Jahr (Mittelwert der Jahre 2007-2011)

stammen ca. 74 % aus diffusen Quellen, überwiegend aus der Landwirtschaft. Grundwasserabfluss und Dränagen stellen die wichtigsten diffusen Eintragspfade dar.

2. Biodiversitätspolitik

93. Wo sieht die Landesregierung Defizite in der "guten fachlichen Praxis" hinsichtlich des Erhalts der Biodiversität? Bitte getrennt nach Grün- und Ackerland darstellen.

Das BNatSchG führt in § 5 Abs. 2 die Grundsätze der "guten fachlichen Praxis" für die Landwirtschaft auf, die bei der landwirtschaftlichen Nutzung neben den Anforderungen, die sich aus den für die Landwirtschaft geltenden Vorschriften und aus § 17 Abs. 2 des Bundes-Bodenschutzgesetzes (BBodSchG) ergeben, zu beachten sind. Hierzu zählen als allgemein gehaltene Maßgaben die Forderung nach einer standortangepassten Bewirtschaftung zur Gewährleistung einer nachhaltigen Bodenfruchtbarkeit und langfristigen Nutzbarkeit der Flächen, das Verbot der Beeinträchtigung der natürlichen Ausstattung der Nutzfläche (Boden, Wasser, Flora, Fauna) über das zur Erzielung eines nachhaltigen Ertrages erforderliche Maßhinaus sowie die Forderungen nach einem ausgewogenen Verhältnis zwischen Tierhaltung und Pflanzenbau und einer Vermeidung schädlicher Umweltauswirkungen.

Im Rahmen der guten fachlichen Praxis sind darüber hinaus die zur Vernetzung von Biotopen erforderlichen Landschaftselemente zu erhalten und nach Möglichkeit zu vermehren sowie ein Grünlandumbruch auf erosionsgefährdeten Hängen, in Überschwemmungsgebieten, auf Standorten mit hohem Grundwasserstand sowie auf Moorstandorten zu unterlassen. Bezüglich der Anwendung von Düngemitteln und PSM verweist das BNatSchG auf das vom Bund geregelte landwirtschaftliche Fachrecht. Jedoch enthält auch die "gute fachliche Praxis im Pflanzenschutz" (im Sinne des § 3 Pflanzenschutzgesetz) bislang lediglich sehr allgemein gehaltene Grundsätze z.B. zu vorbeugenden Maßnahmen, zur bestimmungsgemäßen und sachgerechten Anwen Anwendung von PSM, zum Schutz bestimmter angrenzender Flächen oder zur Dokumentation von Pflanzenschutzmaßnahmen.

Die vom Bundesgesetzgeber eher allgemein gehalten Regeln und Maßgaben zur guten fachlichen Praxis im Pflanzenschutz lassen mithin einen großen Interpretationsspielraum zu und bedürfen der kritischen Überprüfung. Dies gilt z.B. für den großflächigen Einsatz von Totalherbiziden auf Getreide- oder Rapsstoppeln.

Für den Lebensraum Grünland ist in Nordrhein-Westfalen seit mehreren Jahrzehnten ein massiver Rückgang der Grünland-Fläche und der naturschutzfachlichen Qualität des verbliebenen Grünlands (u.a. Artenvielfalt) zu konstatieren. Seit Erlass der DGL-VO im Jahr 2011 wird der Anteil des Dauergrünlandes an der landwirtschaftlichen Fläche in NRW stabil gehalten. Die Landesregierung sieht jedoch einen Zusammenhang der Abnahme der Artenvielfalt des Grünlandes mit einer intensiven Düngung vor allem mit Stickstoff, der frühen und häufigen Schnittnutzung, mit häufig vorkommenden Pflegeumbrüchen mit Nachsaat sowie mit der Einsaat nur noch weniger Futtergrasarten.

Bezogen auf den Lebensraum Acker sieht die Landesregierung neben den nicht ausreichenden Saum- und Brachestrukturen (siehe Antwort zu Frage 87) im Einsatz von Pflanzenschutz- und Düngemitteln, Saatgutreinigung und veränderten Anbauverfahren maßgebliche Beiträge zum anhaltenden und alarmierenden Schwund der Biodiversität in der Agrarlandschaft. Auch großflächiger Unterfolienanbau ist mit Hinblick auf die "gute fachliche Praxis" kritisch zu hinterfragen, führt doch auch dieser zu massiven Beeinträchtigungen bis hin zum kompletten Verlust der ursprünglichen Flora und Fauna der Nutzfläche. Ergänzend sei da-

rauf hingewiesen, dass landesweit zwar nur einige Tausend Hektar betroffen sind, die Beeinträchtigung aber regional zu bestimmten Jahreszeiten beachtlich ist.

Neben dem Verlust der Ackerbegleitflora wird der Lebensraum Acker immer stärker für die gesamte Fauna, insbesondere für zahlreiche Feldvögel, entwertet, da notwendige Strukturen und Nahrung fehlen. Die früher allgegenwärtigen Arten wie Rebhuhn, Kiebitz, Feldlerche sowie weitere europäisch geschützte Vogelarten drohen aus weiten Teilen unserer Landschaft zu verschwinden. Aus Sicht der Landesregierung ist großflächiger Maisanbau in Bezug auf die Biodiversität besonders problematisch, da Maisäcker unter den Agrarkulturen diejenigen mit der geringsten Artenvielfalt sind.

94. Beabsichtigt die Landesregierung verbindliche Vorgaben zur Konkretisierung der guten fachlichen Praxis zu machen?

Verschiedene Aspekte der guten fachlichen Praxis in der Landwirtschaft werden bereits aktuell durch verschiedene rechtliche Regelungen konkretisiert, bei denen es sich überwiegend um Bundesrecht handelt. Insofern kann eine weitere Konkretisierung durch die Landesregierung lediglich im Rahmen verbleibender landesrechtlicher Möglichkeiten erfolgen.

So ist die "gute fachliche Praxis" der Düngung durch die DüV des Bundes weitgehend abschließend geregelt. Ermächtigungen für Landesregelungen finden sich lediglich in der Wirtschaftsdünger-Nachweisverordnung (Meldepflicht bei der Abgabe von Wirtschaftsdünger) und in konkretisierenden Erlassen (z.B. Herbstdüngungserlass von 2012). Die Landesregierung setzt sich im Rahmen der aktuellen Novellierung der DüV für eine fachliche Weiterentwicklung der guten fachlichen Praxis der Düngung ein (siehe hierzu auch die Antwort auf Frage 116).

Die Grundsätze der guten fachlichen Praxis im Pflanzenschutz wurden gemäß § 3 Abs. 2 des Pflanzenschutzgesetzes durch eine Bekanntmachung des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz vom 21. Mai 2010 konkretisiert. Im Einzelfall sind Anordnungen der zuständigen Behörden möglich, die zur Erfüllung der guten fachlichen Praxis gemäß § 3 Abs. 1 Satz 1 des Pflanzenschutzgesetzes erforderlich sind. Von dieser Möglichkeit wurde in Nordrhein-Westfalen in der Vergangenheit kein Gebrauch gemacht. Die Landesregierung behält sich jedoch vor, hiervon in besonders gelagerten Fällen nach sorgfältiger Prüfung künftig Gebrauch zu machen.

Derzeit wird im Rahmen der Novellierung des Landschaftsgesetzes NRW hin zu einem Landesnaturschutzgesetz die Einführung eines stärkeren Grünlandschutzes als Konkretisierung der Grundsätze der guten fachlichen Praxis des § 5 Abs. 2 BNatSchG geprüft.

Angestrebt wird im Rahmen der Landschaftsgesetz-Novelle ein Verbot, im Rahmen der landwirtschaftlichen Nutzung Dauergrünland und Dauerbrachen umzuwandeln, den Grundwasserstand in Nass- und Feuchtgrünland sowie –brachen abzusenken und Feldhecken und Feldgehölze zu beeinträchtigen. Darüber hinaus wird ein Verbot von Pflegeumbrüchen mit anschließender Nachsaat von Grünlandflächen angestrebt auf Landwirtschaftsflächen, die als gesetzlich geschütztes Biotop eingestuft sind.

Derzeit verbietet die DGL-VO NRW grundsätzlich die Überführung von Dauergrünland in eine andere landwirtschaftliche Nutzung. Für das generell als umweltsensibel eingestufte Dauergrünland in FFH--Gebieten wird zudem ab 2015 nach dem DirektZahlVerpflG ein Pflugverbot (d.h. Verbot von Umbruch und Pflegeumbruch) gelten.

Außerdem plant das MKULNV NRW einen Erlass an die Landschaftsbehörden zur Ausgestaltung bestehender und künftiger NSG-Verordnungen, der die "gute fachliche Praxis" in Bezug auf die Erfordernisse zur Erhaltung vegetationskundlich und faunistisch wertvoller Grünlandflächen in NSG konkretisiert.

Diese Vorgaben zur Konkretisierung der guten fachlichen Praxis sind nach Ansicht der Landesregierung nicht ausreichend, um die Biodiversität in der Agrarlandschaft zu fördern. So bekräftigt die Landesregierung ihr Ziel, über die aufgeführten Regelungen zur guten fachlichen Praxis hinaus im Rahmen der Novellierung des Landschaftsgesetzes die landesweite Fläche des Biotopverbunds von 10 % auf mindestens 15 % zu erhöhen, wodurch u.a. extensiv bewirtschaftetes Grünland, Brachen und sonstige extensiv genutzte Bereiche in der Agrarlandschaft gefördert werden sollen.

Im Sinne der guten fachlichen Praxis in der Landwirtschaft ist ein Mindestanteil an naturnahen Strukturen zu erhalten.

95. Welche Möglichkeiten der Steuerung des Maisanbaus und der Grünlandintensivierung bestehen nach Einschätzung der Landesregierung?

Steuerungsmöglichkeiten des Maisanbaus und der Grünlandintensivierung sind naturschutzrechtlich zum einen über die europäischen Artenschutzbestimmungen im Zusammenhang mit der ordnungsgemäßen Landwirtschaft gegeben (§ 44 Abs. 4 BNatSchG). Demnach sind die artenschutzrechtlichen Zugriffsverbote (Tötung, Störung, Beeinträchtigung von Lebensstätten) auch bei der landwirtschaftlichen Bodennutzung nach der guten fachlichen Praxis dann erfüllt, wenn sich der Erhaltungszustand der lokalen Populationen einer europäischen Vogelart oder einer FFH-Anhang IV-Art verschlechtert. In diesen Fällen sind zunächst Maßnahmen des Gebietsschutzes oder des Vertragsnaturschutzes, spezielle Artenschutzmaßnahmen sowie eine gezielte Aufklärung der Landwirte umzusetzen. Sofern diese Maßnahmen nicht wirken, werden die erforderlichen Bewirtschaftungsvorgaben durch die untere Landschaftsbehörde angeordnet.

Daneben sind bei einer möglichen Beeinträchtigung von Natura-2000-Gebieten (FFH- und Vogelschutzgebiete) auch die europarechtlichen Bestimmungen des Habitatschutzes zu beachten. Für alle Natura 2000-Gebiete gilt das allgemeine Verschlechterungsverbot (§ 33 Abs. 1 Satz 1 BNatSchG). Demnach sind alle Veränderungen und Störungen unzulässig, die zu einer erheblichen Beeinträchtigung eines Natura 2000-Gebietes führen können. Des Weiteren ist gegebenenfalls eine FFH-Verträglichkeitsprüfung durchzuführen (§ 34 Abs. 1 BNatSchG), sofern sich ein Projekt negativ auf die Erhaltungsziele und den Schutzzweck eines Natura 2000-Gebietes auswirken kann. Die oben genannten Bestimmungen können auf den Einzelfall bezogen auch im Zusammenhang mit dem Maisanbau und der Grünlandintensivierung Anwendung finden. Darüber hinaus ist es im Rahmen der Genehmigungsverfahren von Biogasanlagen möglich, entsprechende Nebenbestimmungen zum Anbau der geplanten Einsatzstoffe (z.B. Mais) zu formulieren.

Vor diesem Hintergrund hat das MKULNV einen entsprechenden Erlass an die Landschaftsbehörden herausgegeben, in dem diese Steuerungsmöglichkeiten näher erläutert werden (Runderlass MKULNV vom 30.09.2014, Az. III-4-616.19.03.00).

96. Wie sollen Stickstoff-Einträge aus landwirtschaftlicher Produktion in empfindliche Biotope wirkungsvoll verringert werden?

Unabhängig von der Betroffenheit stickstoffempfindlicher Biotope müssen alle Möglichkeiten der Vermeidung von Stickstoffverlusten bei der Ausbringung von Wirtschaftsdünger genutzt werden. NRW setzt sich daher im Rahmen der Novellierung der DüV für höhere Anforderungen an die Ausbringtechnik (nur noch bodennahe Ausbringung bzw. Injektion) und schärfere Restriktionen bei der Ausbringung (z.B. Verlängerung der Sperrfrist) ein. Die Landesregierung unterstützt technische Ansätze zur Vermeidung von Emissionen bei der Ausbringung (zukünftig Förderung emissionsarmer Ausbringtechnik, Versuche der LWK NRW zu emissionsreduzierten Ausbringverfahren).

Bezüglich der N₂O-Emissionen aus direkten und indirekten Emissionen aus Böden sowie dem Güllemanagement wird auf die Antwort zu der Frage 74 verwiesen.

Stickstoffeinträge aus Tierhaltungsanlagen über den Luftpfad in empfindliche Biotope werden in Nordrhein-Westfalen bereits bei der Genehmigung der Anlagen im immissionsschutzrechtlichen Zulassungsverfahren geprüft. Gemäß der Technischen Anleitung zur Reinhaltung der Luft (TA Luft (2002)) muss in Genehmigungsverfahren eine Aussage über die Ammoniakbelastung getroffen werden. Es sind bestimmte Mindestabstände zwischen Emittent und Schutzgut (empfindliche Pflanzen und Ökosysteme) einzuhalten, sonst muss gemäß der TA Luft eine Ausbreitungsrechnung nach Anhang 3 zur Ermittlung der Immissionskonzentration am maßgeblichen Immissionsort (Schutzgut: empfindliche Pflanzen und Ökosysteme) erfolgen.

Unabhängig von der Höhe und Bewertung der oben beschriebenen Ammoniakkonzentration, erfolgt die Betrachtung der Stickstoff-Deposition. Die Nr. 4.8 TA Luft schreibt bei Bau oder Erweiterung landwirtschaftlicher Anlagen vor, dass u.a. die Stickstoff-Deposition im Rahmen einer Sonderfallprüfung zu bewerten ist, sofern Anhaltspunkte dafür vorliegen, dass der Schutz vor erheblichen Nachteilen nicht gewährleistet ist. Mittels des "Leitfadens zur Ermittlung und Bewertung von Stickstoffeinträgen" der Bund-/Länder Arbeitsgemeinschaft für Immissionsschutz (LAI) wird zunächst geprüft, ob bei einem geplanten Vorhaben, in dessen Umgebung sich empfindliche Pflanzen und Biotope befinden, die Anforderungen zum Schutz und zur Vorsorge gegen schädliche Umwelteinwirkungen bei dem gegebenen räumlichen Abstand und den zu erwartenden Emissionen der Anlage eingehalten werden können. Können Schädigungen empfindlicher Pflanzen und Biotope nicht ausgeschlossen werden, muss eine detaillierte Einzelfallprüfung gem. der Nr. 4.8 TA Luft durchgeführt werden.

Der LAI-Leitfaden wurde unter immissionsschutzrechtlichen Gesichtspunkten erstellt. Aus dem Naturschutzrecht können sich gegebenenfalls für Natura 2000-Gebiete zusätzliche Anforderungen ergeben.

Sowohl bei der Prüfung der Ammoniakkonzentration als auch bei der Prüfung der Stickstoff-Deposition können sich Anforderungen zum Abstand der Anlage und/oder zu zusätzlichen Maßnahmen zur Emissionsminderung ergeben, die bei der Genehmigungsentscheidung (Versagung/Erteilung der Genehmigung/Aufnahme von Auflagen) zu berücksichtigen sind.

Darüber hinaus enthält der "NRW-Tierhaltungserlass" vom 19.02.2013 Anforderungen zur Reduzierung der Stickstoffemissionen entsprechend dem Stand der Technik zur Vorsorge gegen schädliche Umwelteinwirkungen. Für große Schweinehaltungsanlagen wird der Einbau von Abluftreinigungsanlagen, die einen Wirkungsgrad zur Ammoniakabscheidung von mindestens 70 % sicherstellen, vorgeschrieben. Nach dem Bundes-Immissionsschutzgesetz genehmigungsbedürftige Gülleläger müssen gemäß Erlass geschlossen ausgeführt oder mit

einer Abdeckung ausgerüstet werden, die eine besonders wirksame Rückhaltung von Ammoniakemissionen gewährleistet.

97. Wie müsste das "Greening" verbessert werden, um einen relevanten Beitrag zum Erhalt der biologischen Vielfalt zu leisten und um der landespolitischen Zielsetzung gerecht zu werden?

Bei allen drei Elementen des Greenings – Ökologische Vorrangflächen, Anbaudiversifizierung und Grünlanderhalt – wären Verbesserungen bei den EU-Rechtsakten und/oder der nationalen Umsetzung erforderlich. Wesentliche erforderliche Verbesserungen sind:

- Anhebung des Anteils der Ökologischen Vorrangflächen auf 10 % der Ackerfläche (Langfristig ist nach Aussage zahlreicher Gutachten ein Anteil von 10 % nicht oder nur extensiv genutzter landwirtschaftlicher Nutzfläche zum Erhalt der Biodiversität im landwirtschaftlich geprägten Raum notwendig)
- Keine Anerkennung von Zwischenfrüchten als Ökologische Vorrangflächen
- Verbot der Ausbringung von Düngemitteln und chemisch-synthetischen PSM auf Ökologischen Vorrangflächen
- Anbaudiversifizierung: Begrenzung des Flächenanteils der Hauptkultur auf maximal 50 %
- Ausweitung der Gebietskulisse für umweltsensibles Dauergrünland, in welcher ein Pflugverbot gilt, auf Vogelschutzgebiete, kohlenstoffreiche Böden (z.B. Moore), Überschwemmungsgebiete und erosionsgefährdete Flächen

98. Welche Möglichkeiten sieht die Landesregierung, im Vertragsnaturschutz auch erfolgsorientierte Vergütungen zu gewähren, um hierdurch die Eigeninitiative von Landwirtinnen und Landwirten zu fördern?

Der seit dem Jahr 1992 mit EU-Kofinanzierungsmitteln durchgeführte Vertragsnaturschutz erfolgt auf der Grundlage eines Ausgleichs von Einkommenseinbußen und Kosten aufgrund der für die einzelnen Vertragspakete vereinbarten Bewirtschaftungsauflagen. Der Ausgleich erfolgt dabei unabhängig von der Wirkung der Maßnahme. Dieser handlungsorientierte Ansatz ist bislang erfolgreich und bietet den teilnehmenden Landwirten eine große Planungssicherheit. Grundsätzlich sind alternativ bzw. ergänzend hierzu auch Förderangebote denkbar, die eine kennarten- bzw. zielartengerechte Flächenbewirtschaftung, z.B. von (artenreichen) Mähwiesen und Weiden honoriert. Solche erfolgsorientierten Honorierungsmodelle wurden in mehreren Bundesländern (u.a. Rheinland-Pfalz, Niedersachsen und Baden-Württemberg) etabliert. Nach den bisherigen Erfahrungen sind sie mit einem verhältnismäßig hohen Informations- und Betreuungsaufwand für die Bewilligungsbehörden verbunden. Im Zuge der Weiterentwicklung des Vertragsnaturschutzes für die Förderperiode ab 2015 wurde der Ansatz einer erfolgsorientieren Honorierung für NRW ebenfalls geprüft. In der Abwägung der Vor- und Nachteile sowie der Unsicherheit, ob er sich mit dem bisherigen Förderangebot sinnvoll kombinieren lässt, wird er derzeit nicht weiter verfolgt.

99. Welche konkreten Maßnahmen zum Erhalt und zur Wiederherstellung der biologischen Vielfalt auf landwirtschaftlich genutzten Flächen hat die Landesregierung bereits ergriffen?

Im Zuge der Neuaufstellung des NRW-Programms "Ländlicher Raum 2014-2020" hat die Landesregierung die Förderung von AUM und den Vertragsnaturschutz gestärkt. So sind ca. 40 % der bis 2020 zur Verfügung stehenden öffentlichen Mittel allein zur Förderung von AUM, einschließlich des Vertragsnaturschutzes und des Ökologischen Landbaus eingeplant. Die Maßnahmen schließen an das Vorgängerprogramm an und sollen bis 2020 weiter ausgebaut werden. Insgesamt wurden die Prämien z.T. deutlich erhöht und damit die Attraktivität der Maßnahmen gesteigert. Auch für die Kombinierbarkeit von AUM und dem so genannten "Greening" der Direktzahlungen wurden die notwendigen Weichen gestellt.

Neben diesem umfangreichen Angebot zur Förderung freiwilliger Agrarumwelt- und Vertragsnaturschutzmaßnahmen sind folgende Aktivitäten der Landesregierung zu nennen:

Für gefährdete Pflanzenarten der Äcker liegt seit 2013 ein Ackerschutzkonzept vor, das sich an dem Bundesprojekt "100 Äcker für die Vielfalt" orientiert. In Nordrhein-Westfalen gibt es 50 floristisch sehr wertvolle Äcker, auf denen mehr als 75 % der gefährdeten Ackerwildkrautarten vorkommen. Deren genetisches Reservoir soll über die zuständigen Kreise künftig gesichert und mit den Mitteln des Vertragsnaturschutzes sollen diese Äcker dauerhaft naturschutzorientiert bewirtschaftet werden.

Weiterhin sind zahlreiche Maßnahmen zum Erhalt und zur Wiederherstellung der biologischen Vielfalt auf landwirtschaftlich genutzten Flächen ergriffen worden, die im Rahmen von EU-kofinanzierten LIFE+ - Projekten, nach den FöNa-Richtlinien des Landes (Förderungen im Natur- und Landschaftsschutz) oder über investive Naturschutzmaßnahmen (u.a. Flächenankauf) umgesetzt wurden bzw. werden.

Darüber hinaus unterstützt das Land seit 2006 zahlreiche Aktivitäten der LWK NRW im Zusammenhang mit dem Thema "Natur- und Artenschutz" (siehe auch Antwort zu Frage 101). Zu den finanzierten Aktivitäten gehören beispielsweise die Sensibilisierung der Betriebe für die Notwendigkeit des Erhalts der biologischen Vielfalt in der Landwirtschaft, die Beratung und die Mitwirkung an verschiedenen regionalen Natur- bzw. Artenschutzprojekten.

Im Juli 2013 hat das Umweltministerium einen Leitfaden zur Umsetzung des Artenschutzes in der Landwirtschaft herausgegeben. Der Leitfaden enthält für besonders gefährdete Arten der Feldflur eine Darstellung sinnvoller Bewirtschaftungsmaßnahmen und dazu passender Fördermöglichkeiten. Ziel des Leitfadens ist, dass ordnungsbehördliche Maßnahmen, wie sie in § 44 Abs. 4 BNatSchG vorgesehen sind, nicht erforderlich werden.

Seit Oktober 2013 führt die Stiftung Rheinische Kulturlandschaft mit Unterstützung des Landes das Projekt "Summendes Rheinland – Landwirte für Ackervielfalt" (Bundesprogramm Biologische Vielfalt) durch. Ziel ist, die Lebensbedingungen für bestäubende Insekten in der Köln-Aachener Bucht, einer intensiv genutzten Ackerbaulandschaft im Rheinland, zu verbessern.

Ebenfalls seit Oktober 2013 führt der Kreis Steinfurt mit Unterstützung des Landes das Projekt "Wege zur Vielfalt – Lebensadern auf Sand" (Bundesprogramm Biologische Vielfalt) durch. Ziel ist, durch den Erhalt, die Optimierung und die Wiederherstellung von linienhaften Landschaftselementen und die Stärkung der in den Schutzgebieten vorhandenen Quellpopulationen die biologische Vielfalt in der nördlichen Westfälischen Bucht zu stärken.

100. Welche weiteren Maßnahmen sind geplant, um den Biodiversitätsverlust in der Agrarlandschaft wirkungsvoll zu stoppen?

Die Landesregierung hat sich im Koalitionsvertrag darauf festgelegt, das wertvolle Naturerbe in Nordrhein-Westfalen durch die Entwicklung einer umfassenden Biodiversitätsstrategie NRW und durch ein neues Landesnaturschutzgesetz zu schützen. Das zentrale Ziel der Naturschutzpolitik in Nordrhein-Westfalen ist, in den nächsten Jahren den Rückgang der biologischen Vielfalt aufzuhalten und sie wieder zu vermehren. Die Biodiversitätsstrategie NRW ist sowohl Standortbestimmung der nordrhein-westfälischen Naturschutzpolitik als auch Ausrichtung auf künftige Herausforderungen. Darin werden für die nächsten 10 bis 15 Jahre nicht nur konkrete Ziele formuliert, es werden auch einzelne Maßnahmen zur Förderung der biologischen Vielfalt festgelegt. Im Zuge der Realisierung der Strategie soll auch das Landschaftsgesetz zu einem Landesnaturschutzgesetz weiterentwickelt werden.

Ziel der Landesregierung im Bereich der Agrarlandschaft ist, die Lebensbedingungen für Flora und Fauna in der Agrarlandschaft zu verbessern. Insgesamt soll der Anteil der Landwirtschaftsflächen mit hohem Naturwert erhöht werden. Dies ist ein entscheidender Beitrag, um den angestrebten landesweiten Biotopverbund auf mindestens 15 % der Landesfläche zu realisieren. In diesem Zusammenhang ist – in Verbindung mit der Pflege und dem Erhalt von Feldrainen und Hecken – die Anlage von nicht genutzten linearen Elementen wie Blühstreifen oder Brachestreifen, z.B. im Rahmen des "Greenings", ein bedeutsamer Beitrag zur Vernetzung der Biotopstrukturen, von dem viele Arten des Offenlandes profitieren.

Hierzu werden sich auch die Landwirtschaftsverbände (Westfälisch-Lippischer Landwirtschaftsverband e.V. (RLV)) sowie die LWK im Rahmen einer gemeinsamen Erklärung zum Schutz der Biodiversität einsetzen, die in diesem Jahr unterzeichnet werden soll. Die fehlenden Brachen sind ein wesentlicher Grund dafür, dass die Feldfauna zurückgeht und die Populationen beispielsweise von Grauammer, Kiebitz, Feldhase und Fasan abnehmen. Zu den sinnvollen Artenschutzmaßnahmen auf Ackerflächen gehört auch die Anlage von Feldlerchenfenstern. Auf Grünland sind insbesondere produktionsintegrierte Artenschutzmaßnahmen wie zum Beispiel die Entwicklung blütenreicher Wiesen geplant. Darüber hinaus soll die Empfehlung der Zukunftskommission Landwirtschaft 2020 aus dem Jahr 2009, etwa 2.000 ha artenreicher magerer Flachlandmähwiesen (FFH-Lebensraumtyp 6510) zu entwickeln, umgesetzt werden, um die Situation dieses Lebensraumtyps zu verbessern.

101. Welche Beiträge kann die Landwirtschaftskammer NRW zur Verbesserung der Biodiversität in der Agrarlandschaft leisten (z.B. Naturschutzberatung)?

Die LWK NRW hat ihre Aktivitäten für den Erhalt der Biodiversität in den letzten Jahren deutlich ausgeweitet. Sie beziehen sich auf die Bereiche Mitwirkung bei der Ausgestaltung von Maßnahmen, Kommunikation in die landwirtschaftliche Praxis, Beratung und Bildung.

Mitwirkung bei der Ausgestaltung von Maßnahmen

Der im letzten Jahr seitens des MKULNV veröffentlichte Leitfaden "Umsetzung des Artenschutzes in der Landwirtschaft" ist unter Mitarbeit der LWK NRW erarbeitet worden. Erste Maßnahmen befinden sich in der Umsetzung. So hat die LWK zu mehreren Informationsveranstaltungen in den Vorkommensgebieten des Feldhamsters und der Grauammer eingeladen und bei den Landwirten für entsprechende Schutzmaßnahmen geworben. In begleitenden Gesprächen zwischen Landwirtschaft und Naturschutz werden die Vertragsangebote weiterentwickelt, um sie bestmöglich in die landwirtschaftliche Produktion einbinden zu

können.

Eine in Vorbereitung befindliche Rahmenvereinbarung zwischen MKULNV, LWK NRW und den beiden Landwirtschaftsverbänden (WLV, RLV) soll weitere Beiträge zur Förderung der Biodiversität im Bereich der Landwirtschaft leisten. Konkret ist vorgesehen, in lokalen runden Tischen unter Beteiligung von Landwirtschaft und Naturschutz weitergehende Maßnahmen zur Förderung der Biodiversität zu entwickeln und in der landwirtschaftlichen Praxis umzusetzen.

Kommunikation

Das Thema Biodiversität und Landwirtschaft hat in der Kommunikation der LWK NRW nach innen und außen zunehmenden Stellenwert erhalten. So erscheinen regelmäßig entsprechende Artikel in der Fachpresse und Mitarbeiter der LWK beteiligen sich aktiv im Rahmen von Tagungen/Veranstaltungen, z.B. mit Vorträgen.

Das Informationsangebot der Homepage zu AUM, Vertragsnaturschutz und zu konkreten Maßnahmen zur Förderung der Biodiversität ist in den letzten Jahren weiter ausgebaut worden. Durch den direkten Kontakt zu den landwirtschaftlichen Betriebsleitern besteht die Möglichkeit, neue rechtliche Rahmenbedingungen rasch und umfassend weiterzugeben und das Thema intensiv zu diskutieren.

Im Zusammenhang mit verschiedenen praktischen Projekten vor Ort wurden, teilweise gemeinsam mit anderen Partnern, Informationsflyer und -broschüren zu biodiversitätsrelevanten Themen für die landwirtschaftliche Praxis erstellt.

Beratung

Auch im Rahmen der Beratungstätigkeiten wurden die Aktivitäten verstärkt. So hat die LWK NRW gemeinsam mit der Biolandberatung GmbH das Beratungsprojekt "Fokus Naturtag" durchgeführt. Es dient der Förderung des Naturschutzbewusstseins und der Naturschutzleistungen landwirtschaftlicher Betriebe. Dabei werden u.a. 10 Betriebe in NRW mit dem Ziel einer Umsetzung von biodiversitätsfördernden Maßnahmen beraten. In dem Projekt sollen in erster Linie Beratungsansätze erprobt und Erfahrungen für ein breiter angelegtes Beratungsangebot gewonnen werden. Im Rahmen der Initiative "Natur am Hof" unterstützt die Landwirtschafskammer NRW konkrete Naturschutzmaßnahmen im Umfeld der landwirtschaftlichen Hofstelle. In diesem Zusammenhang wird im Westmünsterland ein Konzept für Gruppen- und Einzelberatung erarbeitet.

Zum Schutz von Wildtieren werden die landwirtschaftlichen Betriebe insbesondere im Frühjahr auf die Möglichkeiten zur Vermeidung von Wildschäden bei der Grasernte hingewiesen. Dies wird durch Maschinenvorführungen an "Feldtagen" flankiert. Zudem beteiligt sich die LWK NRW an Forschungsvorhaben zur Erkennung von Wildtieren in der Fläche, etwa zur Erprobung von Oktokoptern.

Bildung

Die Themen Naturschutz, Artenschutz und Biodiversität werden im Unterricht der Fachschulen der LWK NRW künftig deutlich ausgeweitet. Dazu erfolgte bereits im vergangenen Jahr die Festlegung der Inhalte für den Unterricht und in diesem Jahr die Zusammenstellung geeigneter Materialien sowie die Fortbildung des Lehrpersonals. Mit der Umsetzung des Konzeptes im Unterricht wird im Schuljahr 2014/2015 begonnen.

F. Recht - Politik - Verwaltung

1. Boden

- 102. Wie werden gemeldete Verstöße gegen die Düngeverordnung durch den Direktor der Landwirtschaftskammer als Landesbeauftragter geahndet?
 Welche Sanktionen wurden in welcher Höhe vorgenommen? Differenzierung bitte nach Landkreisen.
- 103. Wie sind Kontrollen von Landwirten zur korrekten Ausübung der "guten landwirtschaftlichen Praxis nach § 17 BBodSchG" bzw. der gesetzeskonformen Anwendung von Düngern organisiert und wie oft finden diese statt?

 Wer nimmt die Kontrollen vor?

Organisation der Kontrollen nach Düngerecht

Kontrollen zur Einhaltung der Vorschriften der DüV, der WDüngV und der WDüngNachwV werden vom DLWK durchgeführt. Gleiches gilt für die Verfolgung von Anzeigen bei Verstößen gegen die o.g. Verordnungen.

Bei den <u>systematischen</u> Kontrollen werden Landwirte aufgefordert, den in der DüV geforderten Nährstoffvergleich des vergangenen Düngejahres vorzulegen. Die Auswahl der Betriebe erfolgt einerseits nach dem Zufallsprinzip, andererseits werden Betriebe, die in der jüngeren Vergangenheit bei Prüfungen oder durch Anzeigen mit Verstößen aufgefallen sind, zur Vorlage aufgefordert, um zu prüfen, ob die Mängel abgestellt worden sind (Nachkontrolle). Die Anzahl der zufällig ausgewählten Nährstoffvergleiche ist in viehstarken Regionen deutlich höher als in Ackerbauregionen (risikoorientierte Auswahl).

Die eingehenden Nährstoffvergleiche werden nach Aktenlage geprüft und mit vorhandenen Daten abgeglichen. Eingesehen werden die Daten aus dem Integrierten Verwaltungs- und Kontrollsystem (InVeKoS) (Flächengröße, Betriebsspiegel, Angaben zu Wirtschaftsdüngerabgaben und -aufnahmen, Angaben zur Tierhaltung), das Herkunftssicherungs- und Informationssystem für Tiere (Hit) (gehaltene Rinder) sowie das landwirtschaftliche Flächeninformationssystem (LaFIS). Weiterhin wird geprüft, ob an dem Betriebsstandort weitere Betriebe existieren.

Ergeben sich bei dieser Prüfung Unklarheiten oder Anhaltspunkte, die auf Verstöße gegen die Vorschriften der o.g. Verordnungen hinweisen, wird im betroffenen Betrieb eine Vor-Ort-Kontrolle (VOK) durchgeführt.

Des Weiteren werden bei der Auswahl der vor Ort zu kontrollierenden Betriebe folgende Risikokriterien berücksichtigt:

- Aufnahme und Abgabe von Wirtschaftsdüngern
- N-Obergrenze überschritten oder knapp erreicht (ab etwa 160 kg/ha Stickstoff tierischen Ursprungs (N_{tier}) im Betriebsdurchschnitt)
- Betrieb setzt Klärschlamm ein
- N-Saldo im Dreijahresrhythmus unrealistisch
- P-Saldo im Sechsjahresrhythmus unrealistisch
- Erträge der angebauten Kulturen unrealistisch hoch angegeben

- Mineraldüngerzukauf mengenmäßig unrealistisch
- Produktionsverfahren der Tierhaltung unglaubwürdig oder Tierleistungen unrealistisch

Bei den Vor-Ort-Kontrollen wird im Wesentlichen Folgendes geprüft:

- Nährstoffvergleiche der letzten sieben Jahre vorhanden,
- Nährstoffgehalte der eingesetzten Wirtschaftsdünger aufgezeichnet,
- N_{min}-Gehalte der Ackerböden (Richtwerte oder Analysenergebnisse) aufgezeichnet,
- P-Bodenuntersuchungsergebnisse aller Schläge ab 1 ha Größe vorhanden und nicht älter als 6 Jahre,
- Nährstoffvergleiche vollständig, plausibel und richtig,
- Lieferscheine für Wirtschaftsdüngerabgaben und –aufnahmen liegen vor und sind korrekt.

Gleichzeitig wird seit 2012 geprüft, ob die Vorschriften der WDüngV eingehalten wurden (Mitteilung nach § 5 und Meldung nach § 4 bei Importen aus dem Ausland und anderen Bundesländern gemacht).

Die Kontrolle der WDüngNachw wird ab 2014/15 durchgeführt werden.

Insbesondere für die Überprüfung der Nährstoffvergleiche werden die Buchführungsunterlagen der Betriebe eingesehen. Hierbei geht es vor allen darum, die Anzahl der verkauften Tiere zu ermitteln, um die Angaben in den Nährstoffvergleichen zu prüfen. Wird Wirtschaftsdünger abgegeben oder aufgenommen, werden in den Partnerbetrieben Quervergleiche durchgeführt, um die Angaben zu überprüfen. Diese Prüfungen werden in einfachen Fällen als Aktenprüfung, bei Unklarheiten oder beim Verdacht eines Verstoßes gegen die DüV als komplette Vor-Ort-Kontrolle durchgeführt.

Neben den beschriebenen systematischen Kontrollen werden Anzeigen von Bürgern oder anderen Behörden durch den DLWK verfolgt. In diesen Fällen ermitteln die Mitarbeiter der Kreisstellen der LWK zeitnah nach dem Eingang der Anzeige vor Ort und erstellen entsprechende Sachverhaltsfeststellungen.

Jeder Verstoß, der bei den systematischen Kontrollen oder aufgrund von Anzeigen gegen die o.g. Vorschriften festgestellt wird, wird mit einem Bußgeld und - soweit CC-relevant - mit einer Prämienkürzung geahndet. Das Gleiche gilt bei Verstößen, die im Rahmen der unabhängig von den Fachrechtskontrollen zur DüV durchgeführten CC-Kontrollen festgestellt werden.

Da unzulässige Düngerausbringungen nach der Ernte der letzten Hauptfrucht nicht bußgeldbewehrt sind, werden diese Verstöße nur mit Prämienkürzungen geahndet (allerdings liegt die Höhe der Prämienkürzungen häufig deutlich über der Höhe der Bußgelder). Verstöße gegen die Einarbeitungspflicht sind nicht CC-relevant und werden somit nur mit Bußgeldern geahndet.

In den folgenden Tabellen werden der Prüfungsumfang, die festgestellten Verstöße sowie die Anzahl und Höhe der verhängten Bußgelder in den Jahren 2010 bis 2013 dargestellt. Für das Jahr 2013 wurde zusätzlich eine Aufteilung nach den Verwaltungseinheiten der LWK vorgenommen.

Tabelle A21: Kontrolle/Überwachung Düngerecht

	2010	2011	2012	2013
Kontrollen				
	201			
Angeforderte Nährstoffvergleiche	681	1 377	1 465	1 591
Kontrollen Nährstoffvergleiche CC	547	543	549	479
Vor-Ort-Kontrollen	339	398	773	737
Beanstandungen durch systemati- sche Kontrollen (Fachrechtskontrollen incl. CC- VOK)	103	132	239	240
Ordnungswidrigkeits (OWi)- Verfahren incl. Anzeigen				
Summe OWi-Verfahren	152	154	337	287
Anzahl Bußgelder	128	131	272	227
Anzahl Einstellungen	24	23	65	49
Summe Bußgelder DüV	38.755 €	46.319 €	93.093 €	80.231 €
Summe Bußgelder WDüngV ab 2012			3.044 €	25.819 €
Bußgeld-Betrag bis	2.350 €	1.000 €	7.200 €	6.240 €
Ahndung nach Art der Verstöße (Mehrfachnennungen möglich)				
Eintrag in Oberflächengewässer	0	6	1	9
Nicht aufnahmefähiger Boden	8	4	22	5
Fehlende Einarbeitung	5	13	14	7
Überschr. N-Obergrenze im Herbst	0	0	8	5
Düngung ohne Bedarf im Herbst			16	8
Überschr. N-Obergrenze (170/230)	59	33	91	79
Sperrfrist	3	18	6	7
Fehlende Nmin-Werte	8 37	11 29	11 74	7
Fehlende Bodenuntersuchungen Fehlende Wirtschaftsdünger-	6	7	5	38 5
Analysen Fehlender Nährstoffvergleich	23	35	45	36
Fehlerhafter Nährstoffvergleich	39	45	100	69
Nichtvorlage Nährstoffvergleich	4	12	4	0
Verstoß gegen Aufbewahrung	2	1	5	2
Überschreitung Nährstoffsalden	0	6	4	1
V			40	
Verstoß gegen § 3 WDüngV (Lieferschein)			10	28
Verstoß gegen § 4 WDüngV (Meldung)			0	4
Verstoß gegen § 5 WDüngV (Mitteilung)			2	10

Tabelle A22: Kontrolle incl. Anzeigen nach Verwaltungseinheiten der Landwirtschaftskammer NRW in 2013

Verwaltungseinheiten	angefor-	VOK	Beanstandungen	OWi-Verf.	Bußgeld-Summe
LK	derte NV	61	incl. CC-VOK	incl. Anzeigen	ca. in €
	0.5		10		2.400
Aachen/Düren/Euskirchen	96	35	10	17	2.400
Borken	163	73	43	54	27.000
Coesfeld/Recklinghausen	149	176	44	30	18.400
Gütersloh/Münster/Warendorf	198	53	23	31	6.100
Heinsberg/Viersen	91	31	6	15	1.800
Hochsauerland/Olpe/					
Siegen-Wittgenstein	59	0	2	2	500
Höxter/Lippe/Paderborn	156	1	7	23	4.400
Kleve/Wesel	161	151	46	46	25.000
MK/Ennepe-Ruhr/Ruhr-Lippe	62	11	5	5	620
Minden-Lübbecke/					
Herford-Bielefeld	74	0	6	13	4.250
Oberbergischer Kreis/					
RheinBergKreis/Mettmann	54	24	6	9	1.180
Rhein-Erft-Kreis/Rhein-Kreis					
Neuss/Rhein-Sieg-Kreis	148	24	5	9	700
Soest	54	1	3	4	700
Steinfurt	126	92	34	32	13.000
Summe	1591	672	240	290	106.050

Organisation der Kontrollen nach Bodenschutzrecht

siehe Antworten zu Fragen 42-44

104. Wie werden Vorgaben zur Humusbilanz kontrolliert?
Welche gesetzlichen Regelungen bestehen, welche hält die Landesregierung für notwendig?

Zur Humuserhaltung und -bilanzierung bestehen Vorgaben aufgrund der im DirektZahlVerpflG verankerten CC-Anforderungen und nach dem Bodenschutzrecht.

Die Erstellung einer Humusbilanz war bisher eine Alternative, die CC-Anforderungen zum GLÖZ-Standard "Erhalt der organischen Substanz im Boden" zu erfüllen.

Dieser Standard konnte aber auch

- durch den Anbau von 3 Hauptfruchtarten auf den Ackerflächen innerhalb eines Anbaujahres oder
- durch Bodenhumusuntersuchungen auf allen Ackerschlägen, die größer als 1 ha sind,

erfüllt werden.

In den Jahren 2010 bis 2013 erfüllten den GLÖZ-Standard

durch Anbau von 3 Hauptfruchtarten 57%
 durch Erstellen einer Humusbilanz 10%
 durch Bodenhumusuntersuchungen 6%

der Antragsteller. Der Rest der Betriebe musste als reine Grünlandbetriebe diesen Standard nicht erfüllen.

Pro Jahr wurden zwischen 520 und 543 CC-Kontrollen auf Einhaltung dieses Standards durchgeführt, dabei lagen die Beanstandungen zwischen 1 und 6 Betrieben, also unter oder maximal bei ca. 1% der kontrollierten Betriebe.

Im Rahmen der GAP-Reform werden die CC-Anforderungen geändert. Der Anbau von 3 Hauptfruchtarten ist künftig Bestandteil der Greening-Verpflichtungen, die Verpflichtung zur Erstellung einer Humusbilanz oder zu Bodenhumusuntersuchungen entfällt und wird demzufolge bei CC ab 2015 nicht mehr kontrolliert. Die EU-KOM begründete dies mit nicht aussagekräftigen Ergebnissen der Bilanz und der Untersuchung. Es verbleibt bei diesem Standard dann nur noch das Verbot des Abbrennens von Stoppelfeldern.

Der Wegfall der diesbezüglichen CC-Anforderungen ist zu bedauern, da das Bodenschutzrecht bisher keine entsprechende Kontrollmöglichkeit hat. In § 17 BBodSchG besteht lediglich die Anforderung zur Beratung der "Guten fachlichen Praxis" der landwirtschaftlichen Bodennutzung. Abs. 2 Nr. 7 nennt die "Erhaltung des standorttypischen Humusgehaltes des Bodens" und die "ausreichende Zufuhr an organischer Substanz". NRW setzt sich dafür ein, dass verbindliche Regelungen in einer Rechtsverordnung mit ergänzenden Anordnungsbefugnissen im Bodenschutzrecht geschaffen werden.

Unabhängig davon bedarf es einer Weiterentwicklung der Methodik der Humusbilanzierung unter unterschiedlichen Standort- und Klimabedingungen. Ziel muss zumindest die Einhaltung einer ausgeglichenen Humusbilanz sein.

105. Plant die Landesregierung die Erstellung eines Nährstoffberichts für Wirtschaftsdünger, Klärschlämme, Gärreste und Bioabfälle nach Vorbild des von der Landwirtschaftskammer Niedersachsen erstellten Berichts für 2012/2013?

Ja, ein solcher Nährstoffbericht wurde für 2013 durch den DLWK im Auftrag des MKULNV erarbeitet und liegt vor.

106. Welche Möglichkeiten sieht die Landesregierung, mit einer Ausdehnung von Sperrfristen die Belastung von Böden und Gewässern zu reduzieren?

Die Sperrfrist der DüV soll sicherstellen, dass die grundlegenden Anforderungen von § 3 Abs. 4 der DüV⁹ erfüllt werden. In Zeiten, in denen kein Düngebedarf besteht, dürfen keine Düngemittel aufgebracht werden. Dies gilt generell und in erster Linie in den festgelegten Sperrzeiten. Nach den Vorgaben der Nitratrichtlinie müssen Zeiträume, in denen das Ausbringen bestimmter Arten von Düngemitteln auf landwirtschaftlichen Flächen verboten ist, festgelegt werden.

Die Ausbringung ohne Düngebedarf, z.B. im Herbst aufgrund zu geringer Lagerkapazität, ist nicht zulässig.

Die Landesregierung verfolgt mehrere Wege, die Belastungen von Böden und Gewässern durch die Festlegung von Sperrzeiten zu verringern:

- Konsequente Umsetzung der aktuell geltenden Regelungen durch den Herbstdüngungserlass von 2012. Mit dem Herbstdüngungserlass ist festgelegt, bei welchen Kulturen nach Ernte der letzten Hauptfrucht kein Düngebedarf besteht und somit eine Stickstoffdüngung nicht zulässig ist. Damit beginnt die Sperrzeit für die aus Sicht des Gewässerschutzes relevantesten Kulturen (alle Getreidearten nach Mais, Winterweizen nach Raps, Hackfrüchten, Gemüse und Leguminosen) bereits nach Ernte der Hauptfrucht und damit wesentlich früher als die Sperrzeit nach § 4 Abs. 5 der DüV verlangt (ab 1.11. auf Ackerland).
- Deutliche Ausdehnung der Sperrzeit im Rahmen der Novellierung der DüV (grundsätzlich Beginn nach Ernte der Hauptfrucht bis auf wenige Ausnahmen, generell ab 1.10. für mindestens 4 Monate auf Ackerland, möglichst Angleichung an die Regelungen in den Niederlanden).

107. Wie bewertet die Landesregierung die Einführung einer Wirtschaftsdünger-Datenbank, um die ausgebrachten Nährstoffmengen flächenscharf zu erfassen?

Eine Datenbank für die Erfassung aller Wirtschaftsdüngerabgaben auf Betriebsebene wurde durch Wirtschaftsdüngernachweisverordnung bereits 2012 eingeführt und ist inzwischen beim DLWK als zuständige Behörde eingerichtet worden. Mit diesem Instrument können die Vorgaben der DüV auch bei überbetrieblicher Wirtschaftsdüngerverwertung effektiv kontrolliert werden.

Die Landesregierung hält eine Datenbank für die flächenscharfe Erfassung der Ausbringung von Wirtschaftsdünger als ordnungsrechtliches Instrument weder für zielführend noch effektiv. Der Aufwand für die Kontrolle jeder einzelnen Wirtschaftsdüngeraufbringung mit Menge und konkreter Aufbringungsfläche wäre, abgesehen vom Erfassungsaufwand für die betroffenen landwirtschaftlichen Betriebe, für die Behörden sehr hoch und die erfassten Angaben kaum kontrollierbar. Im Vollzug wären diese Daten zudem wenig hilfreich, da die einzige flächenbezogene Anforderung (bedarfsgerechte Düngung) nur durch Erfassung der Wirtschaftsdüngerausbringung nicht zu bewerten ist. Zusätzlich müsste dann auch jede Mineraldüngerausbringung erfasst und kontrolliert werden.

Die Landesregierung hält die Nutzung von flächenscharfen Schlagdatei-Programmen im Rahmen der betrieblichen Dokumentation und Düngeberatung zur Optimierung der betrieblichen Düngeplanung für sinnvoll und hilfreich. NRW setzt sich daher im Rahmen der Novellie-

_

⁹ "Aufbringungszeitpunkt und –menge sind bei Düngemitteln, Bodenhilfsstoffen, Kultursubstraten oder Pflanzenhilfsmitteln so zu wählen, dass verfügbare oder verfügbar werdende Nährstoffe den Pflanzen weitestmöglich zeitgerecht in einer dem Nährstoffbedarf der Pflanze entsprechenden Menge zur Verfügung stehen"

rung der DüV für eine verbindliche Schlagkartei zur Dokumentation der flächenbezogenen Düngebedarfsermittlung ein.

108. Wie schätzt sie die Möglichkeiten zur Einführung einer solchen Datenbank ein? Gibt es Pläne in der Landesregierung eine entsprechende Datenbank zu führen?

Die Landesregierung hält die Einführung einer Datenbank zur flächenscharfen Erfassung der Wirtschaftsdüngerausbringung weder für umsetzbar noch zielführend (siehe dazu Antwort auf Frage 107). Es gibt keine Pläne, eine solche Datenbank einzurichten. Eine verbindliche betriebliche Schlagkartei wird grundsätzlich befürwortet.

109. Wie bewertet die Landesregierung die Einführung einer Datenbank für Nährstoffvergleiche (s. SRU-Vorschlag)?

Die Landesregierung unterstützt den Vorschlag des Sachverständigenrat für Umweltfragen (SRU), eine Datenbank zur zentralen Erfassung von Nährstoffvergleichen nach § 5 der DüV einzuführen. Da eine bundesweite Datenbank zurzeit politisch nicht umsetzbar erscheint, setzt sich die Landesregierung für die Schaffung einer entsprechenden Länderermächtigung in Düngegesetz und DüV ein.

110. Reichen die in der Düngeverordnung vorgesehenen Sanktionen für das Überschreiten der vorgegebenen Stickstoffüberschüsse aus Sicht der Landesregierung aus?

Wenn nein, wie sollten sie verändert werden?

Die DüV sieht für die Überschreitung der Grenze von 170 kg Stickstoff aus Wirtschaftsdüngern tierischer Herkunft pro ha und Jahr im Betriebsdurchschnitt eine Sanktion als Ordnungswidrigkeit vor. Nach § 14 Abs. 3 des Düngegesetzes kann diese Ordnungswidrigkeit mit einem Bußgeld bis zu 15.000 € geahndet werden. Die Landesregierung hält diesen Sanktionsrahmen für ausreichend.

Zusätzlich zu den in der DüV vorgesehenen Sanktionen kann die Überschreitung der 170kg-Grenze im Rahmen von CC mit Prämienkürzungen sanktioniert werden, die im Einzelfall deutlich höher als die vorgesehenen Bußgelder sein können.

Die Überschreitung des betrieblichen Nährstoffüberschusses für Stickstoff oder Phosphat nach § 6 Abs. 1 der DüV ist keine Ordnungswidrigkeit und auch nicht CC relevant. Wird der zulässige Saldo eingehalten, wird davon ausgegangen, dass die Anforderungen an die bedarfsgerechte Düngung nach § 3 Abs. 4 der DüV eingehalten werden. Weitere Sanktionsmöglichkeiten sieht die DüV nicht vor. Das Düngegesetz sieht die Anordnung von Maßnahmen zur Vermeidung festgestellter und künftiger Verstöße vor, diese Sanktionsmöglichkeit ist jedoch ungeeignet.

Die Landesregierung setzt sich im Rahmen der Novellierung der DüV für wirksame Sanktionsmöglichkeiten bei Überschreitung der zulässigen Bilanzüberschüsse ein. Diese sollten die Pflicht einer Düngeberatung, die Anordnung und Umsetzung von Maßnahmen und die Möglichkeit der Verhängung von Bußgeldern umfassen.

111. Wie beurteilt die Landesregierung die Nutzbarkeit von alternativen mehrjährigen Pflanzen (z.B. Durchwachsene Silphie) im Hinblick auf Bodenbelastung und Reduzierung der Erosionsgefahr bei vergleichbarer Energieausbeute?

Als alternative mehrjährige Pflanzen für die Biogasproduktion kommen neben der Durchwachsenen Silphie (Silphium perfoliatum) v.a. das Riesenweizengras (Agropyron elongatum), Sida (Sida hermaphrodita) und Wildpflanzenmischungen in Frage. Daneben gibt es noch Kulturen, wie Ackergrasmischungen, Igniscum – eine Züchtung des Sachalin-Staudenknöterichs (Fallopia sachalinensis)- und Topinambur (Helianthus tuberosus), die bedingt zur Biogasproduktion geeignet sind.

Alternative mehrjährige Kulturen zur Festbrennstofferzeugung, die in der Landwirtschaft angebaut werden, sind v.a. Miscanthus (Miscanthus Subspezies (spp.)) und Kurzumtriebsplantagen z.B. mit Pappeln (Populus spp.), Weiden (Salix spp.) und Robinien (Robinia pseudoacacia).

Mehrjährige Kulturen bilden ein ausgeprägtes Wurzelsystem, das den Boden bis in die Tiefe durchwurzelt. Hierdurch sowie durch die lediglich im Etablierungsjahr erfolgende Bodenbearbeitung wird die Gefahr der Bodenerosion stark verringert. Weiterhin wird durch das tiefe Wurzelsystem die Gefahr von Nährstoffauswaschungen vermindert und die Unempfindlichkeit gegenüber Trockenheit gefördert. Für den Bodenschutz ist weiterhin positiv, dass es durch die ganzjährige Bodenbedeckung und Bodenruhe zu einer Humusanreicherung kommt. Dies führt auch zu einer Förderung des Bodenlebens und trägt zur nachhaltigen Fruchtbarkeit der Böden bei. Zusammenfassend ist festzustellen, dass mehrjährige Energiepflanzen zu verringerter Bodenbelastung und zu einer Reduzierung der Erosionsgefahr führen.

Diesen Vorteilen steht gegenüber, dass die aufgezählten Kulturen aktuell zumeist geringere Energieerträge pro Flächeneinheit als einjährige Kulturen aufweisen, ihre Anlage mit vergleichsweise hohen Kosten verbunden ist, die Flächen über viele Jahre gebunden sind und z.T. geeignete Erntemaschinen und Aufbereitungsverfahren fehlen.

Die Landesregierung verfolgt die Entwicklung mehrjähriger Energiepflanzen dennoch aufmerksam, da Fortschritte in Züchtung, Saatgutbereitstellung, Ernte- und Aufbereitungsverfahren diese Nachteile zukünftig ausgleichen könnten. Sie unterstützt daher gezielt den Versuchsanbau der genannten Kulturen durch die LWK und durch Projektförderung.

- 112. Welche Schlussfolgerungen zieht die Landesregierung aus der Tatsache, dass sich Stickstoffüberschüsse in NRW sehr stark in den Tierhaltungsregionen konzentrieren?
 - Politische Schlussfolgerungen
 - Ordnungsrechtliche Schlussfolgerungen

Regionale Flächenbilanzen für Stickstoff weisen Überschüsse sowohl in Regionen mit hohem Anteil Tierhaltung als auch in Gebieten mit intensivem Gemüsebau aus, was sich vor allem in der regionalen Verteilung der Gewässerbelastung durch Stickstoffeinträge wiederfindet (siehe Antwort zu Frage 65).

Die Landesregierung setzt sich dafür ein:

- Mittel- bis langfristig die weitere Zunahme der Konzentration der Tierhaltung in bestimmten Regionen u.a. mit planungs- und genehmigungsrechtlichen Instrumenten zu verhindern und eine stärkere Flächenbindung der Tierhaltung zu erreichen sowie
- kurzfristig die Verteilung der regional anfallenden Nährstoffe zwischen Tierhaltungsund Ackerbaugebieten zu verbessern und die Kontrolle einer ordnungsgemäßen und
 umweltverträglichen Anwendung von Wirtschaftsdünger sicherzustellen. Die dafür
 notwendigen ordnungsrechtlichen Instrumente werden in der Antwort zu Frage 116
 ausführlich beschrieben.

113. Welche Sanktionsmöglichkeiten gibt es für das Überschreiten der vorgegebenen Stickstoffüberschüsse?

Bezüglich Überschreitung der Grenze von 170 kg Stickstoff siehe Antwort auf Frage 110.

Das Überschreiten der vorgegebenen Stickstoffüberschüsse nach § 6 Abs. 2 der DüV stellt keinen Verstoß dar und kann daher nicht sanktioniert werden. In NRW wird bei Überschreiten der betrieblichen Stickstoffüberschüsse (im 3jährigen Mittel) eine fachliche Bewertung der Überschüsse durchgeführt (Stickstoffüberhangbewertung). Im Falle festgestellter Düngungsfehler bzw. vermeidbarer Verluste wird eine Beratung zur Optimierung des Düngemanagements empfohlen. Im Falle der Nichtumsetzung können Anordnungen nach § 13 Düngegesetz mit der Androhung von Zwangsgeldern erlassen werden.

- 114. Wie oft wurden Sanktionen für das Überschreiten der vorgegebenen Stickstoffüberschüsse zwischen 2007 und 2013 verhängt?
- 115. Wie viele Betriebe haben die zuständigen Behörden in den letzten Jahren im Hinblick auf Überschreitungen der vorgegebenen Stickstoffüberschüsse kontrolliert, und in wie vielen Betrieben haben die zuständigen Behörden dabei in den letzten Jahren Überschreitungen der vorgegebenen Stickstoffüberschüsse festgestellt? (Angaben bitte aufgeschlüsselt nach Landkreisen und nach Betriebsform)

Die N-Salden werden bei allen vorgelegten Nährstoffvergleichen geprüft, da sie u.a. ein wichtiges Kriterium für die Auswahl der vor Ort zu prüfenden Betriebe sind (s. Antwort zu Frage 102/103).

Eine Auswertung liegt für 1850 Nährstoffvergleiche aus den Düngejahren 2010, 2011 und 2012 vor. Eine Auswertung der davor liegenden Jahre existiert nicht und war kurzfristig nicht leistbar. Im Durchschnitt aller Vergleiche wurde ein dreijähriges Saldenmittel von 11,9 kg N/ha festgestellt. Bei 1575 Vergleichen (85 %) lag das Saldenmittel unter 60 kg N/ha. Bei 275 Vergleichen lagen die Saldenmittel über 60 N kg N/ha. Im Durchschnitt wiesen diese Vergleiche ein dreijähriges Saldenmittel von 81,3 kg N/ha aus.

Überschreitungen der zulässigen Stickstoffsalden stellen keinen Verstoß dar und sind weder Bußgeld bewehrt noch CC-relevant (Siehe hierzu auch Frage 113).

2. Wasser

116. Die Landwirtschaft bewirtschaftet die Flächen nach der "guten Landwirtschaftlichen Praxis". Trotzdem scheinen die Belastungen der Gewässer durch Düngemittel nicht ausreichend zurückzugehen, um einen guten Zustand zu erreichen. Welche weiteren Maßnahmen sind deswegen z.B. im Rahmen der Düngeverordnung geplant?

Die Ergebnisse des Nitratberichts für NRW zeigen dringenden Handlungsbedarf zur Verringerung von Stickstoffeinträgen aus der Landwirtschaft.

Die Landesregierung setzt sich daher für eine anspruchsvolle Weiterentwicklung der DüV als Grundlage für die "gute fachliche Praxis" beim Düngen ein. Kernforderungen im laufenden Novellierungsprozess sind:

- Änderung des Düngegesetzes dahingehend, dass die Vermeidung von Gefahren für den Naturhaushalt zur guten fachlichen Praxis gehören. Die Rechtsgrundlagen für die Einbeziehung aller organischen Düngemittel in die Begrenzung auf 170kg N/ha und Jahr sowie Erfassung aller relevanten Nährstoffströme in einer Hoftorbilanz und eine Länderermächtigung zur Ausweisung gefährdeter Gebiete mit erhöhten Anforderungen sollen geschaffen werden.
- Verankerung der wasserwirtschaftlichen Ziele, eines Ressourcen schonenden Umgangs sowie der Vermeidung von möglichen Gefahren für den Naturhaushalt
- Ausweitung der Sperrzeiten im Herbst, d.h. nach Ernte der letzten Hauptfrucht dürfen, bis auf wenige genau definierte Ausnahmen (Winterraps, früh gesäte Zwischenfrucht oder Feldgras, wenn Düngebedarf besteht) keine Wirtschaftsdünger mehr angewandt werden; ab 1. Oktober auch keine mineralische Stickstoffdüngung mehr auf Ackerland,
- vergrößerte Mindestabstände zu Gewässern bzw. eine stärkere Beschränkung des Ausbringens von Düngemitteln auf stark geneigten Flächen
- regelmäßige Analysen betriebseigener Wirtschaftsdünger
- Erhöhung der notwendigen Lagerkapazität (bisher 6 Monate) auf 9 Monate (Grünlandbetriebe ggf. weniger), darüber hinaus sollte sie auch auf Lagerung von Gärresten erweitert werden.
- Einbeziehung aller organischen Stickstoffherkünfte, also auch der Gärreste aus Biogasanlagen, in die Begrenzung der organischen Stickstoffdüngung auf maximal 170kg N pro ha und Jahr,
- verbesserte Bilanzierungsmethoden bei Futterbaubetrieben (plausibilisierte Feld-/Stallbilanz, etabliertes Verfahren aus Bayern), mittelfristige Einführung einer obligatorischen Hoftorbilanzierung und
- konsequente Begrenzung und Sanktionierung betrieblicher Nährstoffüberschüsse auf maximal 50kg N/ha, Beratungspflicht ggf. mit Anordnungen bei Überschreitung
- stärkere Limitierung der Phosphat-Bilanzüberschüsse (kein Überschuss auf hochversorgten Böden),
- verpflichtende Meldung der Nährstoffbilanzen und Erfassung in einer zentralen, webbasierten Datenbank, mindestens eine Länderermächtigung dafür.

Genauso wichtig wie der ordnungsrechtliche Rahmen sind jedoch auch weitere Instrumente zur Minderung negativer Umweltauswirkungen durch die Landwirtschaft; unter anderem müssen:

- eine weitere Konzentration der Tierhaltung verhindert und die Flächenbindung deutlich verbessert werden (siehe Antwort zu Frage 112),
- eine zukunftsfähige Beratung die Umsetzung einer umweltverträglichen Landwirtschaft begleiten und unterstützen,
- gezielte Fördermaßnahmen zusätzliche Anreize schaffen und
- die Kontrolle der Einhaltung gesetzlicher Regelungen organisatorisch und inhaltlich weiter optimiert werden.

117. In welchen Fällen hat die zuständige Wasserbehörde aus welchen Gründen Verbote, Gebote oder Handlungspflichten gegenüber welchen Adressaten hinsichtlich der gewässerschutzkonformen Anwendung von Düngemitteln ausgesprochen?

Die Zuständigkeit zur Überwachung und Kontrolle der Einhaltung der Regelungen der DüV liegt beim DLWK. Die Wasserbehörden sind hierzu lediglich im Zusammenhang mit der Erteilung von Ausnahmen von der Sperrfrist als Einvernehmensbehörde zu beteiligen.

Im Zusammenhang mit der Sperrfristverschiebung werden regelmäßig weitere wasserwirtschaftliche Auflagen vorgegeben.

Daneben sind die Wasserbehörden oftmals im Zusammenhang mit Anzeigen bzw. Beschwerden zur Anwendung von Düngemitteln beteiligt. Hieraus sowie aus eigenen Erkenntnissen im Rahmen der Gewässerüberwachung kann sich Handlungsbedarf im Sinne der Notwendigkeit von Verboten, Geboten oder Handlungspflichten ergeben. Diese werden mit dem DLWK erörtert, wo die notwendigen Umsetzungsschritte ergriffen werden. In seltenen Einzelfällen erlassen die Wasserbehörden eigene Ordnungsverfügungen bei festgestellten Missständen.

Regelmäßig sind die Wasserbehörden im Zusammenhang mit Regelungen über Gebote, Verbote und Pflichten zur Anwendung von Düngemitteln in Wasserschutzgebieten befasst.

In den Schutzgebietsverordnungen ist in der Regel ein Verbot der Ausbringung von unbehandeltem Wirtschaftsdünger in der Zone II eines WSG enthalten. Das Aufbringen von aufbereiteter (hygienisierter) Gülle, Jauche, Silagesickersaft und Festmist unterliegt i. d. R. keinem Verbot in Zone II, aber einer Genehmigungspflicht durch die Wasserbehörde.

Ergänzend ist darauf hinzuweisen, dass die unteren Umweltschutzbehörden (als Bodenschutz- oder Abfallwirtschaftsbehörde) auch im Rahmen der Aufbringung von Bioabfällen oder Klärschlämmen Anordnungen zur gewässerkonformen Anwendung erlassen.

118. Haben sich – aus Sicht der Landesregierung- die Kooperationen zwischen der Landwirtschaft und den Wasserversorgungsunternehmen bewährt bzw. wer überprüft/evaluiert diese Vereinbarungen?

Die Kooperationen zwischen Wasserversorgungswirtschaft und Landwirtschaft sind auf der Grundlage der sog. 12-Punkte-Vereinbarung aus dem Jahr 1989 gegründet worden. Sie dienen dem Zweck, Einträge von PSM und Nährstoffen in das Grundwasser und die Oberflächengewässer in Trinkwassergewinnungsgebieten zu reduzieren.

Durch vielfältige Maßnahmen der Beratung und durch ein Bündel von konkreten Maßnahmen zur Reduzierung des Einsatzes und der Aufbringung von Düngemitteln und PSM konnten in den Wassergewinnungsgebieten nachweislich Erfolge erzielt werden. Diese sind neben den naturräumlichen Randbedingungen v.a. aber von der Intensität der Kooperation und dem Engagement im Einzelfall abhängig.

Mit der vom MKULNV in Auftrag gegebenen Studie zur "Entwicklung eines vereinheitlichten Verfahrens zur Erfassung und Bewertung der Auswirkungen von Vereinbarungen zwischen Landwirtschaft und Wasserwirtschaft auf die Gewässerqualität in NRW", die im Dezember 2006 vorgelegt wurde, wurde auf der Grundlage der Auswertung von 21 betrachteten Wassereinzugsgebieten dokumentiert, dass deutliche, auf die Veränderung der Flächennutzung im Kooperationszeitraum zurückzuführende, Verbesserungen der Grund- und Rohwasserbeschaffenheit zu verzeichnen waren. Diese Aussage wird auch aufgrund von Ergebnisberichten einzelner Wasserversorgungsunternehmen über die Kooperationstätigkeit bestätigt, wobei die Veränderungen sich teilweise von einem sehr hohen Niveau auf ein hohes Niveau bewegten.

Aus den Ergebnissen der Auswertungen der Grund- und Rohwasserbeschaffenheit und deren Entwicklung durch das LANUV im Jahr 2014 zeigen sich in jüngster Zeit stagnierende Ergebnisse der Nitratbelastung des Grundwassers, teilweise auf hohem Niveau oberhalb des von der GrwV des Bundes vorgegebenen Grenzwertes von 50 mg/L. Nach Darstellungen von Wasserversorgungsunternehmen wird auch deutlich, dass der Erfolg von Maßnahmen und ein weiteres Absenken der Nitratkonzentrationen in Kooperationsgebieten dort an ihre Grenzen stoßen, wo sie deutliche Ertragsminderungen nach sich ziehen, die Qualitätsanforderungen an die Produkte hohe Düngegaben bis zur Ernte erfordern oder in Regionen hoher Nährstoffüberschüsse.

Die Landesregierung befürwortet die Fortführung der Kooperation zwischen Wasserversorgungswirtschaft und Landwirtschaft, hält aber eine Intensivierung und eine stärkere Ausrichtung am Erfolg für erforderlich.

119. Welche Möglichkeiten haben die Behörden im Falle des Überschreitens des Nitratschwellenwertes Einfluss zu nehmen? Sind diese Möglichkeiten nach Meinung der Landesregierung ausreichend? Wenn nein, welche Maßnahmen sind aus Sicht der Landesregierung notwendig? 120. Reichen diese Möglichkeiten aus Sicht der Landesregierung aus, oder müssten die Möglichkeiten erweitert werden, um gegen die Ursachen überhöhter Nitratwerte effektiv vorgehen zu können?
Welche Möglichkeiten könnten hier geprüft werden?

Auf die Antworten zu den Fragen 66 und 67 wird hingewiesen.

Die EU-Nitratrichtlinie wird in Deutschland durch die DüV umgesetzt.

Es war beabsichtigt, bei Einhaltung der Anforderungen der DüV grundsätzlich davon ausgehen zu können, dass der in der Richtlinie vorgegebene Nitratwert von 50 mg/l flächendeckend eingehalten wird.

Da die Umweltbelastungen gleichwohl deutlich zunehmen ist der Bund von der Landesregierung in den vergangenen Jahren mehrfach aufgefordert worden, die DüV zu novellieren. Ebenso ist dies der Hauptauslöser für das Vertragsverletzungsverfahren der EU-Kommission gegen Deutschland. Zu den Hauptforderungen der Landesregierung zu einem verbesserten landwirtschaftlichen Fachrecht wird auf die Antworten zu den Fragen 116 und 121 verwiesen.

Eine weitere Stellschraube ist die Optimierung des Vollzugs düngerechtlicher Vorschriften, die von der Landesregierung kontinuierlich vorangetrieben wird.

Eine über die derzeitigen Regelungen der DüV hinausgehende Beschränkung der Bewirtschaftung, um einer Nitratwertüberschreitung zu begegnen, ist auf Grundlage wasserrechtlicher Bestimmungen grundsätzlich möglich. Denkbar sind beispielsweise die Festlegung von "Wasserschutzgebieten" in Bereichen erhöhter Belastungen oder Einzelanordnungen zur Verhinderung weiterer Einträge.

Derartige Regelungen lösen jedoch in der Regel Entschädigungspflichten gegenüber den landwirtschaftlichen Betrieben aus und sind aus Sicht der Landesregierung derzeit flächendeckend weder finanzierbar noch mit der Forderung nach Sozialpflichtigkeit des Eigentums vereinbar. Vorrang sollte demnach eine deutlich stringentere Formulierung des Ordnungsrechts haben, die mit der Novelle der DüV angestrebt wird.

Die langjährigen Erfahrungen aus den Trinkwasserschutzkooperationen (vgl. Antwort zur Frage 118) belegen, dass es mit erheblichem finanziellem Aufwand gelingen kann, das Niveau von Nitratwerten im Grundwasser zu senken. Gleichzeitig ist jedoch auch in den letzten Jahren eine Stagnation auf hohem Niveau festzustellen.

Ob es erforderlich sein wird, das Spektrum der landesrechtlichen Möglichkeiten zu erweitern, um Maßnahmen gegen überhöhte Nitratwerte ergreifen zu können, wird wesentlich von der Frage abhängen, ob die anstehende Novelle der DüV ein ausreichendes Maß an Schutz vor Nitrateinträgen ermöglicht und ob es gelingt, dieses auch im Vollzug durchzusetzen.

Sollte dies nicht der Fall sein, könnte beispielsweise die Übernahme von Verfahrensweisen der langjährig bewährten Altlastenbearbeitung geprüft werden, wie z.B.

Aufstellung eines gestuften Sanierungsplans mit vertraglich festgelegten Pflichten unter Beteiligung der LWK, von Berufsverbänden, von Wasserversorgungsunternehmen, etc. mit folgenden Stufen

- Festlegung von Kontrolluntersuchungen mit Definition einer schrittweisen Zielerreichung und Vorlage von Jahresberichten
- Festlegung eines standort- und einzelfallspezifischen Maßnahmenbündels
- Einrichtung eines landesweiten Sanierungsfonds; freiwillige Vereinbarung der Verursacher zum Härtefallausgleich, Unterstützung durch Förderprogramme

Darüber hinaus könnten auch die Möglichkeiten von Abgabenregelungen geprüft werden (vgl. Antwort zu Fragen 130 / 131).

Ebenso ist im Rahmen des kooperativen Gewässerschutzes auch die Frage zu erörtern, welche zusätzlichen Beiträge aus dem Bereich der Landwirtschaft und des Garten- und Gemüsebaus aus Nachhaltigkeitsgründen und im Eigeninteresse erbracht werden können. Bezüglich der Notwendigkeit von ausreichendem Lagerraum wird auf die Antwort zur Frage 18 sowie hinsichtlich Verfahren zur Gülleaufbereitung auf die Antwort zur Frage 20 verwiesen.

121. Kann mit dem landwirtschaftlichen Fachrecht ein flächendeckender Gewässerund Grundwasserschutz gewährleistet werden? Wenn nein, welche Änderungen müssten nach Meinung der Landesregierung vorgenommen werden?

Auf die Antwort zu den Fragen 119 und 120 wird hingewiesen.

Bislang wurde in Deutschland ein ausschließlich flächendeckender Ansatz in der Umsetzung der EU-Nitratrichtlinie verfolgt.

Aus Sicht der Landesregierung ist es erforderlich, dass die Belastungssituation der Gewässer deutlich stärker im Rahmen des landwirtschaftlichen Fachrechts berücksichtigt wird.

Neben den bereits in der Antwort zur Frage 116 aufgeführten wesentlichen Änderungspunkten zur DüV aus Sicht der Landesregierung ist insbesondere eine Länderermächtigung zur Ausweisung gefährdeter Gebiete zu schaffen mit der Möglichkeit, dort gebietsspezifisch weitere und differenzierte Anforderungen an die Düngung zu stellen.

Ferner sind auch abseits der DüV weitere Regelungen im Hinblick auf einen flächendeckenden Boden-, Gewässer- und Grundwasserschutz zu prüfen. Dies bezieht sich insbesondere auf:

- weitere Optimierung der Wirtschaftsdüngerverbringung / Stoffstromkontrolle
- Verstärkung von CC-Kontrollen
- Optimierung des Vollzugs düngerechtlicher Vorschriften
- Verbesserung des Baurechts im Hinblick auf die Genehmigung von Tierhaltungsanlagen
- Förderung der technischen Gülle- und Gärrestaufbereitung zur Unterstützung der überregionalen Wirtschaftsdüngerverwertung
- Größere Datentransparenz bezüglich landwirtschaftlicher Daten bzw. Nachbesserung der diesbezüglichen Umweltstatistik
- Harmonisierung des Düngemittelrechts mit den Anforderungen des Umweltrechts

Schärfung naturschutzrechtlicher und wasserrechtlicher Vorschriften

122. Wie wird gegen die Verschmutzung der nordrhein-westfälischen Oberflächengewässer durch landwirtschaftliche Einflüsse vorgegangen?

Generell wird darauf hingewiesen, dass das Land NRW derzeit den Bewirtschaftungsplan und das zugehörige Maßnahmenprogramm gemäß WRRL überarbeitet. Dabei werden alle relevanten Belastungen der Gewässer berücksichtigt. Der Bewirtschaftungsplan wird in 2015 in die Öffentlichkeitsbeteiligung gegeben.

Hinsichtlich der Einträge aus der Düngung und des Pflanzenschutzes wird zudem auf die Antworten zu den Fragen 59, 66 und 67 hingewiesen. Weiterhin sind erosionsbedingte Belastungen mit Nährstoffen, zum Teil aber auch mit PSM zu betrachten. Durch die Anlage von Gewässerrandstreifen nach § 90 a LWG bzw. § 38 WHG wird ein Beitrag zur Minderung diffuser Stoffeinträge geleistet.

Alle ackerbaulich genutzten Flächen in Nordrhein-Westfalen werden nach § 2 der Direkt-ZahlVerpflV hinsichtlich ihrer Erosionsgefährdung durch Wasser und Wind in 3 bzw. 2 Erosionsgefährdungsklassen eingeteilt. Seit dem 30.6.2010 müssen alle Betriebe, die Flächenprämien der EU erhalten, die in der DirektZahlVerpflV festgelegten Anforderungen (u.a. Pflugverbot bei Reihenkulturen) auf erosionsgefährdeten Flächen erfüllen. Die Einhaltung wird im Rahmen von CC systematisch kontrolliert.

Ergänzend wird im Programm ländlicher Raum die (über die gesetzlichen Bestimmungen hinausgehende) Anlage von Uferrandstreifen und von Erosionsschutzstreifen als AUM gefördert, die durch mehrjährige Begrünung zur Minderung von Erosionseffekten beitragen. Darüber hinaus wirbt die Landesregierung dafür, die Verpflichtungen des Greenings verstärkt zur Anlage von Uferrandstreifen zu nutzen.

123. Welche Auflagen und Verbote gelten innerhalb der Gewässerrandstreifen und welche staatlichen Institutionen kontrollieren die Einhaltung der Gewässerrandstreifen und Gülleausbringungszeiten?

Der Gewässerrandstreifen ist in § 38 Wasserhaushaltsgesetz im Außenbereich auf 5 m festgelegt. Hinsichtlich des Einsatzes von Düngemitteln in diesem 5-m-Streifen wird in Abs. 4, Ziff. 3 deren Anwendung ausdrücklich von dem Verbot ausgenommen, "soweit durch Landesrecht nichts anderes bestimmt ist".

§ 90a LWG regelt hinsichtlich einer landwirtschaftlichen Nutzung in diesem 5-m-Streifen in Abs. 2 lediglich den Einsatz von PSM.

Deren Einsatz ist dann verboten, soweit nicht die Anwendungsbestimmungen für das PSM einen Einsatz in diesem Bereich ausdrücklich zulassen.

Ein Verbot des Einsatzes von Düngemitteln auf dem Gewässerrandstreifen kann nur nach § 90a Abs. 4 LWG im Einzelfall angeordnet werden. Dies ist aber für einen bestimmten Gewässerabschnitt zu begründen.

Der Einsatz von Düngemitteln entlang von Gewässern richtet sich demzufolge nach der DüV. Demnach ist deren Einsatz innerhalb des Gewässerrandstreifens ausdrücklich zugelassen. Der Grenzabstand nach derzeit geltender DüV beträgt - je nach Ausbringungstechnik - zwi-

schen 1 und 3 m. Bei hängigen Flächen muss im Abstand von 3 bis 10 Metern eine direkte Einarbeitung erfolgen.

Die Kontrolle der Einhaltung der düngerechtlichen Bestimmungen liegt in der Zuständigkeit des DLWK.

124. Wie häufig wurden zwischen 2007 und 2013 Verstöße bei Gewässerrandstreifen verzeichnet?

Eine systematische Kontrolle der Gewässerrandstreifen und der Einhaltung der diesbezüglichen Regelungen ist schon aufgrund des Umfangs von den Behörden nicht zu leisten.

Im Rahmen von regelmäßigen Gewässerschauen werden zahlreiche Verstöße bei Gewässerrandstreifen festgestellt, die sich in der Regel jedoch nicht auf den Einsatz von PSM oder Düngemittel beziehen. In den meisten Fällen handelt es um Verstöße gegen das Grünlandumbruchverbot.

Bei Messkampagnen des Landes werden darüber hinaus immer wieder Nachweise von PSM in Gewässern festgestellt, deren konkrete Ursachen (z.B. diffus über den Gewässerrandstreifen) in der Regel nicht ermittelt werden.

Bezüglich des Ausbringens von Düngemitteln erfolgen häufig Mitteilungen von Bürgerinnen und Bürgern. Feststellungen über die Nichteinhaltung von Abständen oder einen direkten Eintrag in oberirdische Gewässer können jedoch in den meisten Fällen in einer Vor-Ort-Kontrolle nicht mehr getroffen werden.

Die unteren Wasserbehörden haben in diesem Zusammenhang über 220 Verstöße im genannten Zeitraum berichtet.

125. Welche wissenschaftlichen Erkenntnisse und Erfahrungen gibt es hinsichtlich unterschiedlicher Breiten bei Gewässerrandstreifen (Vorbild Dänemark)?

Die Antwort bezieht sich ausschließlich auf Gewässerrandstreifen entlang von Flüssen und Bächen und nicht auf die erheblich größeren Schutzzonen von Trinkwasserschutzzonen (vgl. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW) Arbeitsblatt W 102).

Das LANUV hat im Rahmen der Beantwortung dieser Großen Anfrage eine Sichtung vorhandener Literaturstellen durchgeführt. Übereinstimmend kommen die Arbeiten zu dem Schluss, dass Randstreifen grundsätzlich eine effektive Rückhaltung von gelösten und an Feststoffen gebundenen Pestiziden, Nährstoffen und Sedimenten bewirken. Der Grad der Rückhaltung wird dabei von zahlreichen Faktoren beeinflusst wie z.B. Breite, Bewuchs, Gefälle des Randstreifens, Gefälle der angrenzenden Flächen, Niederschlagsmenge.

Die geforderten Breiten reichen dabei von mindestens 3 m (Sieber et al. (2005): Kosten-Wirksamkeitsanalyse unterschiedlicher Randstreifenbreiten in einem Uferrandstreifenprogramm zur Reduktion des Risikos chemischer Pflanzenschutzmittel; Agrarwirtschaft 54, Heft 8, 341-350) bis zu 20 m (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL 2014): Zulassungsbericht für das Pflanzenschutzmittel Successor T (Wirkstoffe: Pethoxamid, Terbuthylazin)) oder gar 30 m (Sieber et al., s.o.).

Die jüngste und umfassendste Arbeit ist der Review-Artikel von Zhang et al. (A Review of Vegetated Buffers and a Meta-analysis of their Mitigation Efficacy in Reducing Nonpoint Source Pollution (J. Environ. Qual. 39:76–84 (2010)). Darin werden die Daten aus ca. 70 Arbeiten zu dem Thema ausgewertet und zu einer gemeinsamen Aussage geführt.

Demnach ist ab ca. 10 m Breite des Randstreifens mit einer ca. 90 %igen Rückhaltung sedimentgebundener und gelöster Belastungen zu rechnen. Bzgl. der Nährstoffe liegt das Rückhaltungspotential etwas niedriger, erreicht mit ca. 70-80 % ab 10 m Breite aber auch einen erheblichen Umfang.

Tabelle A23: Rückhaltungspotential von Uferstreifen in Prozent

	Uferstreifen	Uferstreifen	Uferstreifen	Uferstreifen
	5m	10m	15m	20m
Sediment	80	90	91	91
Pflanzen-				
schutzmittel	60	80	90	93
N	50	70	80	90
Р	50	70	80	90

Quelle: Zhang et al. 2010

Gestützt wird diese Angabe auch von dem etwas älteren Review-Artikel von Reichenberger et al. (Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness, Science of the Total Environment (2007), 1-35). Auch in dieser Auswertung erreicht die Rückhaltung sedimentgebundener PSM ab 10 m Randstreifenbreite knapp 100 %. Die gelösten PSM werden dagegen ab 10 m Breite zwar deutlich stärker zurückgehalten als bei geringeren Breiten, aber nur zu ca. 80 %.

126. Wo sieht die Landesregierung Defizite in der "guten fachlichen Praxis" hinsichtlich Grund- und Oberflächengewässerschutz?

Die "gute fachliche Praxis" ist u.a. in § 5 Abs. 2 BNatSchG, § 17 BBodSchG aber auch im landwirtschaftlichem Fachrecht verankert.

Zu letzterem gehört der "gute landwirtschaftliche und ökologische Zustand" nach § 2 Direkt-ZahlVerpflG , die "gute fachliche Praxis der Düngung" nach DüV sowie die "Grundsätze für die Durchführung der guten fachlichen Praxis im Pflanzenschutz" nach Pflanzenschutzgesetz

Aus den Ergebnissen des kontinuierlichen Gewässermonitorings und der hierbei festgestellten Belastungen ist abzuleiten, dass die vorgenannte "gute fachliche Praxis" der Landwirtschaft im Hinblick auf einen nachhaltigen Gewässerschutz nicht ausreichend ist.

Das Hauptproblem ist im Wesentlichen darin zu sehen, dass das landwirtschaftliche Fachrecht bislang zu einseitig auf Produktions- und nicht ausreichend auf Nachhaltigkeitsaspekte ausgerichtet ist.

Hinsichtlich der festzustellenden Defizite wie auch der Ansätze und Bestrebungen der Landesregierung zur Problembewältigung wird auf die Antworten zu den übrigen Fragen dieser Großen Anfrage verwiesen, insbesondere die Fragen 66, 67, 121 und 122.

- 127. Ist der Landesregierung die Water Quality Trading Politik der US-amerikanischen Umweltschutzbehörde EPA bekannt und wie schätzt die Landesregierung die Möglichkeit ein, eine vergleichbare Regelung in Deutschland bzw. NRW einzuführen?
- 128. Könnte die Belastung von Böden und Gewässern mit Nitrat und Phosphat durch die landwirtschaftliche Produktion mithilfe eines Emissionsrechtehandels ebendieser Stoffe verringert werden?

129. Wie könnte nach Meinung der Landesregierung ein solcher Emissionsrechtehandel ausgestaltet werden?

Die Water Quality Trading Politik der US-amerikanischen Umweltschutzbehörde (EPA) ist der Landesregierung in ihrem grundsätzlichen Ansatz bekannt. Es handelt sich hierbei um ein ökonomisches Instrument (handelbare Verschmutzungsrechte/Zertifikate) zur Reduzierung stofflicher Belastungen vorrangig in Oberflächengewässern, dessen Ausgestaltung weitgehend den Bundesstaaten überlassen blieb. Die konkrete Umsetzung dieses Instrumentes variiert zwischen den Bundesstaaten und Gewässereinzugsgebieten in weiten Bereichen, so dass sich nach Kenntnis der Landesregierung in der Literatur weder eine einheitliche Beschreibung noch eine durchgängige Bewertung der Wirksamkeit des Instruments findet.

In Europa fand dieser Politikansatz (Emissionshandel) mit Blick auf den Schutz der Gewässer vor Nährstoffeinträgen aus der Landwirtschaft bislang wenig bis keine Beachtung, so dass weder konkrete Modelle zu dessen Ausgestaltung noch praktische Erfahrungen insbesondere zu dessen Eignung zum Grundwasserschutz vorliegen. Er hat bisher auch keinen Eingang in die europäische Gewässerschutzpolitik und das europäische Wasserrecht gefunden. Vorrangig die Unsicherheit, wie ein Emissionshandel angesichts der Vielzahl möglicher Emittenten praktisch durchgeführt werden, mit vertretbaren Transaktionskosten abgewickelt werden und wie eine wirksame Kontrolle des Austauschs der Emissionsrechte erfolgen könnte, hat dazu geführt, dass dieser Politikansatz nicht intensiver verfolgt wurde. Der Landesregierung ist daher weder eine belastbare Einschätzung möglich, ob eine den USamerikanischen Ansätzen vergleichbare Regelung in Europa, Deutschland oder NRW eingeführt werden könnte und welche Wirksamkeit von ihr erwartet werden könnte, noch verfügt sie über eine fundierte eigene Beschreibung eines solchen Emissionsrechtehandels.

130. Welche Umweltkosten entstehen durch die Belastung von Böden und Gewässern?

Gewässer

Unter Umweltkosten werden die Kosten für Schäden verstanden, die eine Gewässernutzung für Umwelt, Ökosysteme und Personen mit sich bringt. Eng verwandt mit den Umweltkosten sind die Ressourcenkosten, die die Kosten für die entgangenen Möglichkeiten umfasst, unter denen andere Nutzungszwecke infolge einer bestimmten Gewässernutzung leiden. Weil eine begriffliche Abgrenzung zwischen Umweltkosten und Ressourcenkosten ohne Doppelerfassungen kaum möglich ist, werden Umwelt- und Ressourcenkosten üblicherweise als Begriffspaar verwendet.

Eine Berechnung der Umwelt- und Ressourcenkosten ist methodisch sehr schwierig. In Deutschland werden als Untergrenze der Umwelt- und Ressourcenkosten infolge einer landwirtschaftlichen Gewässernutzung diejenigen Kosten beschrieben, die als Gewässerschutzkosten der landwirtschaftlichen Nutzung anfallen. Diese umfassen in NRW "grundlegende" Gewässerschutzkosten (z. B. Errichtung von Güllelagerkapazitäten, etc.), Ausgaben für AUM, Wasserkooperationen, Beratungskonzepte und zusätzliche Transportkosten für die Nährstoffausbringung. Ausweislich des nordrhein-westfälischen Bewirtschaftungsplans zur Umsetzung der Europäischen Wasserrahmenrichtlinie aus dem Jahr 2010 belaufen sich diese Gewässerschutzkosten der landwirtschaftlichen Gewässernutzung für den Zeitraum 2010 bis 2015 auf insgesamt 814 Mill. Euro.

Böden

Neben nicht bezifferbaren Beeinträchtigungen von Bodenfunktionen werden unter Umwelt-kosten durch die Belastung von Böden solche Kosten verstanden, die aus schädlichen Bodenveränderungen gemäß § 2 Abs. 3 BBodSchG resultieren. Daraus können Einschränkungen der Nutzbarkeit der Böden und Folgewirkungen auf angrenzende Schutzgüter resultieren. Kosten ergeben sich aus dem ggf. erforderlichen Sanierungsaufwand oder dauerhaften Nutzungsbeschränkungen. Durch landwirtschaftliche Nutzung entstandene schädliche Bodenveränderungen sind in Einzelfällen bei Bodenerosion durch Wasser bekannt, jedoch nicht quantifiziert.

131. Welche Möglichkeiten und Instrumente bestehen, diese Kosten gemäß Verursacherprinzip umzulegen?

<u>Gewässer</u>

Die Möglichkeit, Gewässerschutzkosten verursacherbezogen auf die Landwirtschaft umzulegen, besteht im Wesentlichen in der Nutzung von ordnungsrechtlichen Instrumenten und in Abgabenlösungen. Bereits heute werden über ordnungsrechtliche Verpflichtungen Gewässerschutzkosten auf landwirtschaftliche Betriebe umgelegt. Dies geschieht zum Beispiel über die Regelungen zu wassergefährdenden Stoffen oder im Rahmen der DüV. Die Anwendung von Ordnungsrecht verursacht immer einen bestimmten Vollzugsaufwand, Vollzugsdefizite sind nicht ausgeschlossen. Als effizienter werden manchmal Abgabelösungen angesehen.

Bei Abgabenlösungen kommen hier Steuern, Sonderabgaben, Gebühren oder Beiträge in Frage. In der Vergangenheit wurden vor allem Dünge- und Pflanzenschutzmittelabgaben diskutiert. Diese Sonderabgaben können abhängig vom Verbrauch von Mineraldünger oder Gülle, von Stickstoffbilanzen, dem PSM-Verbrauch, etc. festgelegt werden.

Das Wasserentnahmeentgeltgesetz des Landes Nordrhein-Westfalen (WasEG) regelt für die Entnahme von Wasser aus Gewässern zwar grundsätzlich eine Entgeltpflicht. Allerdings werden einige Entnahmen von der Entgeltpflicht freigestellt. Hierzu gehören gemäß § 1 Abs. 2 Nr. 10 WasEG auch die Entnahmen von Wasser zum Zwecke der Bewässerung landwirtschaftlich, gärtnerisch und forstwirtschaftlich genutzter Flächen. Die Landesregierung hat in ihrem Bericht vom 25.07.2014 ausgeführt, dass sie eine Überprüfung der Befreiungsregelung für sinnvoll erachtet. Die Überprüfung kann die Landesregierung im Zusammenhang mit dem nach § 12 WasEG bis zum 31. Dezember 2018 vorzulegenden Evaluierungsbericht durchführen.

<u>Böden</u>

Gemäß § 4 Abs. 3 BBodSchG richtet sich die Gefahrenabwehrpflicht u.a. an den Verursacher schädlicher Bodenveränderungen, wenn ein kausaler Nachweis der Verursachung möglich ist und dieser leistungsfähig ist. Für nicht kausal zuordnungsfähige sog. "Summationsund Distanzschäden" hatte jedoch eine von NRW beantragte Regelung keine Mehrheit bei den Beratungen zum BBodSchG gefunden. Ähnlich wie im Wasserbereich wären auch zum Schutz von Böden ergänzende Abgaberegelungen denkbar.

<u>Abkürzungsverzeichnis</u>

Abkürzung	Beschreibung
а	Jahr
a.a.R.d.T.	allgemein anerkannten Regeln der Technik
Abb.	Abbildung
ABI.	Amtsblatt der Europäischen Union
Abs.	Absatz
ASL	Ammoniumsulfat-Lösung
atl.	atlantisch
AUM	Agrarumweltmaßnahmen
BBodSchG	Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten
BBodSchV	Bundes-Bodenschutz- und Altlastenverordnung
BfN	Bundesamt für Naturschutz
BG	Bestimmungsgrenze
BMG	Bundesministerium für Gesundheit
BNatSchG	Bundesnaturschutzgesetz
BVL	Bundesamtes für Verbraucherschutz und Lebensmittelsicherheit
CC	Cross Compliance
CH ₄	Methan
CO ₂	Kohlenstoffdioxid
DDT	Dichlordiphenyltrichlorethan (Insektizid)
DGL-VO	Dauergrünlanderhaltungsverordnung
DIN	Deutsche Institut für Normung
DirektZahlDurchfG	Direktzahlungen-Durchführungsgesetz
DirektZahlVerpflG	Direktzahlungen-Verpflichtungengesetz
DirektZahlVerpflV	Direktzahlungen-Verpflichtungenverordnung
DLWK	Direktor der Landwirtschaftskammer als Landesbeauftragter (Hoheitliche Aufgaben)
DüMV	Düngemittelverordnung
DüV	Düngeverordnung
DVGW	Deutscher Verein des Gas- und Wasserfaches e.V.
EEG	Erneuerbare-Energien-Gesetz
EFRE	Europäischer Fonds für regionale Entwicklung
EMEP	European Monitoring and Evaluation Programme
EMiL	Erosionsschutzberatungsinstrument "Erosionsmanagement in der Landwirtschaft"
EPA	Environmental Protection Agency/ US-amerikanischen Umweltschutz- behörde
EU	Europäische Union
F&E	Forschung und Entwicklung
FBI	Farmland-Bird-Index
FFH	Fauna-Flora-Habitat

Abkürzung	Beschreibung
FIS StoBo	Fachinformationssystem Stoffliche Bodenbelastung
FJW	Forschungsstelle für Jagdkunde und Wildschadenverhütung
FöNa	Förderungen im Natur- und Landschaftsschutz
GAP	Gemeinsamen Agrarpolitik
GE	Europäische Geruchseinheit
GIS	Geographisches Informationssystem
GOW	gesundheitliche Orientierungswert
GrwV	Grundwasserverordnung
GWK	Grundwasserkörper
ha	Hektar
Hit	Herkunftssicherungs- und Informationssystem für Tiere
HNV	High Nature Value Farmland
HTK	Hühnertrockenkot
HygrisC	Landesgrundwasserdatenbank
InVeKoS	Integriertes Verwaltungs- und Kontrollsystem
IT.NRW	Landesbetrieb Information und Technik Nordrhein-Westfalen
JGS	Jauche, Gülle, Silagesickersäfte
JKI	Julius Kühn-Instituts - Bundesforschungsinstitut für Kulturpflanzen
kont.	kontinental
LaFIS	landwirtschaftliches Flächeninformationssystem
LAI	Bund-/Länder Arbeitsgemeinschaft für Immissionsschutz
LANUV	Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV)
LESchV	Landes-Erosionsschutzverordnung
LF	Landwirtschaftlich genutzte Fläche
LIKI	Länderinitiative Kernindikatoren
LRT	Lebensraumtypen
LUFA	Landwirtschaftliche Untersuchungs- und Forschungsanstalt Nord- rhein-Westfalen
LWG	Landeswassergesetz
LWK	Landwirtschaftskammer (Selbstverwaltungsaufgaben)
MBA	mechanisch-biologischen Abfallbehandlungsanlagen
Mill.	Million
	Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Ver-
MKULNV	braucherschutz des Landes Nordrhein-Westfalen
MST	Messstelle
N	Stickstoff
N_2O	Distickstoffmonoxid/ Lachgas
NaWaRo	Nachwachsende Rohstoffe
NDMA	N-Nitroso-Dimethylamin
NH ₃	Ammoniak
NL	Niederlande

Abkürzung	Beschreibung
N _{min}	mineralisierter Stickstoff
nrM	nicht relevanten Metabolite
NSG	Naturschutzgebiet
N _{tier}	Stickstoff tierischen Ursprungs
ÖFS	Ökologischen Flächenstichprobe
OFWK	Oberflächenwasserkörper
OGewV	Oberflächengewässerverordnung
OWi	Ordnungswidrigkeit
Р	Phosphat
P ₂ O ₅	Phosphorpentoxid
PBSM	Pflanzenbehandlungs- und Schädlingsbekämpfungsmitteln
PBT	bioakkumulierbaren und toxischen Stoffes
PFT	Perfluorierte Tenside
POP	persistente organische Schadstoffe
PSM	Pflanzenschutzmittel
RegBez.	Regierungsbezirk
RLV	Rheinischer Landwirtschafts-Verband e.V.
RTO	regenerativen thermischen Oxidation
spp.	Subspezies/ Unterart
SRU	Sachverständigenrat für Umweltfragen
TA	Technischen Anleitung
TrinkwV	Trinkwasserverordnung
TS	Trockensubstanz
UBA	Umweltbundesamt
UWB	Untere Wasserbehörde
VDLUFA	Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten
VNS	Vertragsnaturschutz
VOK	Vor-Ort-Kontrolle
vPvB	sehr persistente und sehr bioakkumulierbare Stoffe
VSchRL	Vogelschutzrichtlinie
WasEG	Wasserentnahmeentgeltgesetz
WDüngNachwV	Wirtschaftsdüngernachweisverordnung
WDüngV	Verordnung über das Inverkehrbringen und Befördern von Wirtschaftsdünger
WHG	Wasserhaushaltsgesetz
WLV	Westfälisch-Lippischer Landwirtschaftsverband e.V.
WRRL	EG-Wasserrahmenrichtlinie
WINE	LO-wasserrannennonune

Übersicht der Abbildungen im Textteil

ABBILDUNG 1	ENTWICKLUNG DER FLÄCHENNUTZUNG FÜR DIE 10 WICHTIGSTEN
	ACKERKULTUREN IN NORDRHEIN-WESTFALEN5
ABBILDUNG 2:	REAKTIVER STICKSTOFF: EMISSIONEN AUS DER LANDWIRTSCHAFT IN NRW17
ABBILDUNG 3:	AMMONIAK-STICKSTOFF: EMISSIONEN AUS DER LANDWIRTSCHAFT IN NRW
ARRII DI ING 4:	STICKSTOFFEINTRAG IN WALDGEBIETEN IN NRW18
	KARTE DER NATIONALEN STICKSTOFF-VORBELASTUNG
ABBILDONG 5.	(DEPOSITIONSDATEN FÜR DAS JAHR 2007- LANDNUTZUNGSKLASSE
	LAUBWALD; UBA, 2014)19
ARRII DI ING 6:	HOFTOR-BILANZ (NACH VDLUFA 2007, VERÄNDERT)25
	FELD-STALLBILANZ (NACH VDLUFA 2007, VERÄNDERT)26
	SCHLAGBILANZ (NACH VDLUFA 2007, VERÄNDERT)27
ABBILDUNG 9:	HUMUSGEHALTE NACH REGIONEN (AUSWERTUNG LWK, 47.686 ANALYSEN AUS 2006 – 2012)39
ADDII DUNG 40	
ABBILDUNG 10	: HUMUSGEHALTE NACH REGIONEN (HUMUSMONITORING LANUV NRW, N = 196)39
ARRII DUNC 11	: STICKSTOFF- UND PHOSPHOREINTRÄGE IN OBERFLÄCHENGEWÄSSER
ABBILDONG 11	NRWS DURCH EROSION, OBERFLÄCHENABFLUSS, DRÄNAGEN UND
	GRUNDWASSER PRO HEKTAR, MITTELWERTE DER JAHRE 2007-2011
ADDII DUNG 40	BERECHNET AUS MODELLIERUNGSERGEBNISSEN59
ABBILDUNG 12	ERGEBNISSE DER UNTERSUCHUNG DER OBERFLÄCHENWASSERKÖRPER
	(OFWK) AUF PFLANZENBEHANDLUNGS- UND
	SCHÄDLINGSBEKÄMPFUNGSMITTEL (PBSM) IM 2. MONITORINGZYKLUS
	GEMÄß DER EUROPÄISCHEN WASSERRAHMENRICHTLINIE. DARGESTELLT
	IST DIE ANZAHL DER OBERFLÄCHENWASSERKÖRPER IN DEN EINZELNEN
	TEILEINZUGSGEBIETEN VON NRW, SOWIE DEREN ANTEIL DER AUF PBSM
	UNTERSUCHT WURDE, DEREN ANTEIL IN DEM ÜBERSCHREITUNGEN BZW.
	KEINE ÜBERSCHREITUNGEN DER UMWELTQUALITÄTSNOMEN (ANLAGE 7
	UND 5) BZW. ORIENTIERUNGSWERT (NICHT GESETZLICH VERBINDLICH
	GEREGELT) FESTGESTELLT WURDEN66
ABBILDUNG 13	: AKTUELLE NITRATKONZENTRATION DER GRUND- UND
	ROHWASSERMESSSTELLEN IM OBEREN GRUNDWASSERLEITER AB 2013 BIS
	HEUTE (STAND DER DATENABFRAGE: 14.08.2014; QUELLE:
	LANDESGRUNDWASSERDATENBANK HYGRISC). AUSGEWERTET WURDE
	DER JEWEILS LETZTE NITRAT-MESSWERT PRO MESSTELLE. LEGENDE:

	ROT: MESSWERT > 50 MG/L, ORANGE: >37,5 MG/L, GELB: >25 MG/L, GRUN:
	>12,5 MG/L, DUNKELBLAU: >BG, HELLBLAU: <bg72< td=""></bg72<>
ABBILDUNG 14:	NITRATBELASTUNG DER GRUNDWASSERKÖRPER IN NRW 2007-2012. 73
ABBILDUNG 15:	ZEITREIHE DER NH3-EMISSIONEN AUS DER TIERHALTUNG IN NORDRHEIN-
	WESTFALEN76
ABBILDUNG 16:	ZEITREIHE DER NH ₃ -EMISSIONEN AUS MINERALDÜNGERN77
ABBILDUNG 17:	ZEITREIHE DER TREIBHAUSGASEMISSIONEN DER LANDWIRTSCHAFT IN
	NRW, GETRENNT NACH CO ₂ , CH ₄ UND N ₂ O78
ABBILDUNG 18:	ANTEIL UND ENTWICKLUNG DES TEILINDIKATORS "ARTENREICHES
	GRÜNLAND" DES HIGH NATURE VALUE FARMLAND (HNV)- INDIKATORS AN
	DER GESAMTEN GRÜNLANDFLÄCHE VON NRW IM JAHRE 2012. 86
ABBILDUNG 19:	VERGLEICH DER MITTLEREN BIOTOPQUALITÄT MIT HILFE DES
	BIOTOPWERTES FÜR DAS GRÜNLAND INNERHALB UND AUßERHALB VON
	NATURSCHUTZGEBIETEN IN NRW UND DEN BIOGEOGRAFISCHEN
	REGIONEN IN 201287
ABBILDUNG 20:	BESTANDSENTWICKLUNG VON UFERSCHNEPFE, GROßEM BRACHVOGEL
	UND BEKASSINE IN NORDRHEIN-WESTFALEN VON 1975 BIS 2012. 89
ABBILDUNG 21:	ANTEIL UND ENTWICKLUNG DES TEILINDIKATORS "ARTENREICHE ÄCKER"
	DES HIGH NATURE VALUE FARMLAND (HNV)-INDIKATORS AN DER
	GESAMTEN ACKERFLÄCHE VON NRW IM JAHRE 201290
ABBILDUNG 22:	ANTEIL DER ACKERFLÄCHEN MIT HÖHEREM NATURWERT (HNV) AN DER
	ACKERFLÄCHE IN NRW (BEZUGSJAHR 2012)91
ABBILDUNG 23:	BRUTBESTANDSENTWICKLUNG DER WIESENSCHAFSTELZE IN NRW AUF
	BASIS DER ÖKOLOGISCHEN FLÄCHENSTICHPROBE (ÖFS)93
ABBILDUNG 24:	BRUTBESTANDSENTWICKLUNG DER FELDLERCHE IN NRW AUF BASIS DEF
	ÖKOLOGISCHEN FLÄCHENSTICHPROBE (ÖFS)93
ABBILDUNG 25:	ERHALTUNGSZUSTAND DER PLANUNGSRELEVANTEN BRUTVOGELARTEN
	DES AGRARLANDES IN NRW (ATL = ATLANTISCHE, KON = KONTINENTALE
	REGION, N = ARTENZAHL)94
ABBILDUNG 26:	MITTLERE ANZAHL VON ACKERWILDKRAUTARTEN AUF ACKERFLÄCHEN IN
	NRW IM JAHRE 201296
ABBILDUNG 27:	BRUTBESTANDSENTWICKLUNG DES REBHUHNS IN NRW AUF BASIS DER
	ÖKOLOGISCHEN FLÄCHENSTICHPROBE (ÖFS)98
ABBILDUNG 28:	DIFFERENZIERUNG VON SAUM-BIOTOPTYPEN IN DER AGRARLANDSCHAF
	VON NRW IM JAHRE 2012

ABBILDUNG 29:	ENTWICKLUNG DES NRW-HNV-INDIKATORS VON 2009 BIS 2012 (HNV I:
	ÄUßERST HOHER NATURWERT, HNV II: SEHR HOHER NATURWERT, HNV III:
	MÄßIG HOHER NATURWERT)103
ABBILDUNG 30:	BESTANDSENTWICKLUNG DER ARTEN DES LIKI-INDIKATORS
	ARTENVIELFALT UND LANDSCHAFTSQUALITÄT" (UNTERE LINIE) SOWIE DES
	EU-INDIKATORS "FARMLAND-BIRD-INDEX" (FBI; OBERE LINIE)104

Übersicht der Tabellen im Textteil

TABELLE A1:	TIERBESTÄNDE IN NORDRHEIN-WESTFALEN	8
TABELLE A2:	MINERALDÜNGERABSATZ IN NRW	13
TABELLE A3:	STICKSTOFF-ANFALL IN DER TIERHALTUNG IN NRW* (ANGAE	BEN IN KG N)
		14
TABELLE A4:	PHOSPHAT-ANFALL IN DER TIERHALTUNG IN NRW (ANGABE	N IN KG P ₂ O ₅)
		15
TABELLE A5:	NÄHRSTOFFE PFLANZLICHER HERKUNFT AUS BIOGASANLA	GEN 16
TABELLE A6:	RECHTLICHE GRUNDLAGEN FÜR IMPORTE AUS NL UND VER	FÜGBARE DATEN
		20
TABELLE A7:	JAHRESMENGEN VON WIRTSCHAFTSDÜNGERIMPORTEN AU	S NL20
TABELLE A8:	STICKSTOFF (KG N) AUS ORGANISCHEN DÜNGERN IN DEN K	REISEN IM JAHR
	2013	22
TABELLE A9:	PHOSPHAT (KG P2O5) AUS ORGANISCHEN DÜNGERN IN DEN	N KREISEN IM
	JAHR 2013	23
TABELLE A10:	ANTEIL DER BODENPROBEN IN DEN P-GEHALTSKLASSEN	24
TABELLE A11:	IN DER DATENBANK ZUR WIRTSCHAFTSDÜNGER-NACHWEIS	SVERORDNUNG
	ERFASSTEN ABGABEMELDUNGEN NACH ART DER WIRTSCH	AFTSDÜNGER
	FÜR 2013	28
TABELLE A12:	ZUSAMMENSETZUNG VON GÄRRESTEN NACH VERGORENEI	M SUBSTRAT UND
	TROCKENSUBSTANZGEHALT (TS)	42
TABELLE A13:	WASSERVERSORGUNG NACH EIGENGEWINNUNG, FREMDBE	EZUG UND
	WASSERABGABE AN LETZTVERBRAUCHER IN MILL. M ³	46
TABELLE A14:	NICHTÖFFENTLICHE WASSERVERSORGUNG IN MILL. M3	46
TABELLE A15:	LANDWIRTSCHAFTLICHE WASSERGEWINNUNGSANLAGEN IN	NORDRHEIN-
	WESTFALEN	49
TABELLE A17	SELEKTIERTES DATENKOLLEKTIV FÜR PFLANZENSCHUTZMI	TTEL-
	RÜCKSTÄNDEN IM GRUNDWASSER 2010 -2013 MIT ANZAHL I	DER PROBEN UND
	MESSSTELLEN	62
TABELLE A18:	GESAMTBEWERTUNG DES ERHALTUNGSZUSTANDES DER A	NHANG I-
	LEBENSRAUMTYPEN 6510 UND 6520 DER FAUNA-FLORA-HAB	BITAT-RICHTLINIE
	DER EU.	88
TABELLE A19:	BEWERTUNG "ARTENREICHE ÄCKER/ACKERBRACHEN".	90
TABELLE A20:	GEFÄHRDUNG (UND TRENDS) VON VOGELARTEN IM LEBENS	SRAUM
	FELD/ACKER IN NRW. KATEGORIEN DER ROTEN LISTE: 1 = V	OM AUSSTERBEN
	BEDROHT, $2 = STARK GEFÄHRDET$, $3 = GEFÄHRDET$, $V = VOFF$	RWARNLISTE, N
	DZW S - VON SCHITZMARNARNAHMEN ARHÄNGIG * - LINGEEÄI	UDDET 02

TABELLE A21: KONTROLLE/ÜBERWACHUNG DÜNGERECHT 119

TABELLE A22: KONTROLLE INCL. ANZEIGEN NACH VERWALTUNGSEINHEITEN DER

LANDWIRTSCHAFTSKAMMER NRW IN 2013 120

120

TABELLE A23: RÜCKHALTUNGSPOTENTIAL VON UFERSTREIFEN IN PROZENT133

Übersicht der Tabellen im Anhang

TABELLE B1:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR GEMÜSE UND ANDERE GARTENBAUERZEUGNISSE IN
	NORDRHEIN-WESTFALEN NACH KREISFREIEN STÄDTEN UND KREISEN*)
	149
TABELLE B2:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR FELDGRAS/GRASANBAU AUF DEM ACKERLAND IN
	NORDRHEIN-WESTFALEN NACH KREISFREIEN STÄDTEN UND KREISEN*)
	150
TABELLE B3:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR KARTOFFELN IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)151
TABELLE B4:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR KÖRNERMAIS IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)152
TABELLE B5:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR SILOMAIS IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)153
TABELLE B6:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR TRITICALE IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)154
TABELLE B7:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR WINTERGERSTE IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)155
TABELLE B8:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR WINTERRAPS IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)156
TABELLE B9:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR WINTERWEIZEN IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)157
TABELLE B10:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010:
	ANBAUFLÄCHEN FÜR ZUCKERRÜBEN IN NORDRHEIN-WESTFALEN NACH
	KREISFREIEN STÄDTEN UND KREISEN*)158
TABELLE B11:	(ZU FRAGE 2) BODENNUTZUNGSHAUPTERHEBUNGEN 1991– 2010: HINWEISE
	ZUR STATISTIK159
TABELLE B12:	(ZU FRAGE 3) AGRARBERICHTERSTATTUNG 1974/75 SOWIE
	LANDWIRTSCHAFTSZÄHLUNGEN 1979, 1991, 1999 UND 2010:

	DAUERGRÜNLAND DER LANDWIRTSCHAFTLICHEN BETRIEBE SOWIE
	PROZENTUALER ANTEIL DES DAUERGRÜNLANDES AN DER
	LANDWIRTSCHAFTLICH GENUTZTEN FLÄCHE (LF)160
TABELLE B13:	(ZU FRAGE 10) GESAMTSTICKSTOFF: ANFALL, IMPORT, EXPORT UND
	VERBLEIB IN NRW (ANGABEN IN KG N)161
TABELLE B14:	(ZU FRAGE 57) STATISTISCHE KENNZAHLEN ZU PFLANZENSCHUTZMITTELN
	IM GRUNDWASSER163
TABELLE B15:	(ZU FRAGE 64) MESSSTELLEN MIT MAXIMALWERT NITRAT >50 MG/L IM
	ZEITRAUM 2013-2014 (STAND: HYGRISC, 14.08.2014)167

Tabelle B1: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Gemüse und andere Gartenbauerzeugnisse in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche				Berichts			
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.		ļ.		Fläche i	n ha		
	Kreisfreie Städte						_
05 111 000 05 112 000	Düsseldorf	321	290	324	355	292	2
	Duisburg	14	18	11	37	44	
05 113 000 05 114 000	Essen Krefeld	42 446	47 530	40 451	50 539	66 552	6
05 114 000	Mönchengladbach	102	113	100	116	117	1
05 116 000	Mülheim an der Ruhr	19	68	43	22	20	
05 117 000	Oberhausen	11	9	5	10	9	
05 119 000	Remscheid	1	1	2	2	1	
05 120 000		18	20	22	19	16	
05 124 000	Wuppertal	10	26	8	14	10	
35 124 000	vvuppertai	10	26	0	14	10	
	Kreise						
05 154 000	Kleve	2 307	3 072	3 676	3 531	3 472	3 (
05 158 000	Mettmann	129	146	103	128	143	
05 162 000	Rhein-Kreis Neuss	1 375	1 937	1 758	2 006	1 809	2 (
05 166 000	Viersen	1 830	2 149	2 194	2 922	2 835	3 2
05 170 000	Wesel	592	705	767	900	803	
5 100 000	RegBez. Düsseldorf	7 218	9 131	9 501	10 651	10 191	11
	Kreisfreie Städte						
5 313 000	Aachen	63	20	27	25	33	
05 314 000	Bonn	89	115	74	83	87	
5 315 000	Köln	185	104	162	147	126	
05 316 000	Leverkusen	11	16	9	14	11	
	Kreise						
05 334 000	Aachen, Städteregion						
05 354 000	Aachen	35	92	103	101	110	
			724			1 061	1
05 358 000	Düren	543 1 387		752	981		
05 362 000	Rhein-Erft-Kreis		1 748	1 746	1 759	1 629	1
05 366 000	Euskirchen	671	683	840	741	543	
05 370 000	Heinsberg	257	345	601	760	911	1 :
05 374 000	Oberbergischer Kreis	9	11	7	6	8	
05 378 000	Rheinisch-Bergischer Kreis	52	44	63	79	60	
05 382 000	Rhein-Sieg-Kreis	1 782	1 993	1 815	2 173	1 850	1
05 300 000	RegBez. Köln	5 084	5 895	6 197	6 868	6 428	7
	Kreisfreie Städte	0.7		000	050	054	
05 512 000	Bottrop	97	144	223	256	254	- :
05 513 000	Gelsenkirchen	13	14	8	12	8	
05 515 000	Münster	139	134	151	191	227	
	Kreise						
05 554 000	Borken	1 267	1 479	1 491	1 654	1 786	1 :
05 558 000		144	152	192	283	249	
05 562 000	Recklinghausen	563	702	734	782	777	
05 566 000	Steinfurt	207	262	359	412	367	
05 570 000	Warendorf	468	557	712	908	1 045	
0.0.000	TV di Gildeli	.00	007		000		
05 500 000	RegBez. Münster	2 899	3 443	3 870	4 499	4 713	4
	Kreisfreie Stadt						
05 711 000		218	176	216	213	238	
05 754 000	Kreise Gütersloh	306	504	542	579	532	
05 754 000	Herford	246	271	270	341	288	
05 762 000	Höxter	427	326	336	371	407	
05 766 000	Lippe	385	589	569	527	472	
05 770 000 05 774 000	Minden-Lübbecke Paderborn	163 190	247 264	369 330	615 352	771 418	
000 114 000	1 adelbeili	130	204	330	332	410	
05 700 000	RegBez. Detmold	1 935	2 377	2 632	2 997	3 127	2
	Kreisfreie Städte						
05 911 000	Bochum	20	16	11	12	12	
05 911 000	Dortmund	49	133	44	50	47	
05 914 000	Hagen	6	2	2	3	2	
05 914 000	Hamm	20	33		36	27	
05 915 000 05 916 000	Hamm Herne	5	4	26 5	10	12	
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	55	90	106	82	60	
05 958 000	Hochsauerlandkreis	23	31	38	33	40	
05 962 000	Märkischer Kreis	48	69	96	84	77	
05 966 000	Olpe	5	9	13	18	13	
05 970 000	Siegen-Wittgenstein	9	9	6	8	8	
05 974 000	Soest	590	773	760	713	607	
05 978 000	Unna	176	261	245	259	287	
35 900 000	RegBez. Arnsberg	1 007	1 431	1 351	1 309	1 191	1 (
	_						
	Nordrhein-Westfalen	18 142	22 278	23 551	26 323	25 649	26

Tabelle B2: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Feldgras/Grasanbau auf dem Ackerland in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche	_			Bericht			
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.				Fläche	in ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	46	80	65	88	100	1:
05 112 000	Duisburg	16	12	24	16	74	10
05 113 000	Essen	86	88	125	104	160	2
05 114 000	Krefeld	44	91	73	68	66	
05 116 000	Mönchengladbach	162	223	244	281	308	36
05 117 000	Mülheim an der Ruhr	20	9	11	18	35	
05 119 000	Oberhausen		4	6	8	23	
05 120 000	Remscheid	42	58	50	41	62	
05 122 000	Solingen	10	36	47	63	54	
05 124 000	Wuppertal	36	40	61	55	107	10
05 124 000	vvuppertai	36	40	01	55	107	- 10
	Kreise						
05 154 000	Kleve	2 533	2 378	2 254	1 872	2 337	2 4
05 158 000	Mettmann	119	176	319	363	483	6
05 162 000	Rhein-Kreis Neuss	345	356	432	496	486	7:
05 166 000	Viersen	1 453	1 557	1 549	1 456	1 480	1 5
05 170 000	Wesel	1 409	1 880	1 664	1 492	1 526	1 88
05 100 000	RegBez. Düsseldorf	6 321	6 986	6 925	6 419	7 302	8 5
	Kreisfreie Städte						
05 313 000	Aachen	22	15	21	31	47	
05 313 000	Bonn	29	25	4	29	12	
		57					
05 315 000	Köln		46	34	79	72	
05 316 000	Leverkusen	10	43	129	119	168	1
	Kraina						
05.00 :	Kreise						
05 334 000	Aachen, Städteregion						2
05 354 000	Aachen	65	66	93	79	143	
05 358 000	Düren	277	371	349	404	363	5
05 362 000	Rhein-Erft-Kreis	138	127	206	222	247	3
05 366 000	Euskirchen	236	271	259	309	418	7
05 370 000	Heinsberg	560	738	634	886	905	1.1
05 374 000	Oberbergischer Kreis	71	104	112	116	145	2
05 378 000	Rheinisch-Bergischer Kreis	135	168	164	201	266	2
05 382 000	Rhein-Sieg-Kreis	278	313	351	435	484	8:
03 302 000	Kriein-Sieg-Kreis	270	313	331	455	404	0.
05 300 000	RegBez. Köln	1 878	2 289	2 356	2 910	3 269	4 80
05 512 000	Kreisfreie Städte Bottrop		23	5	56	37	
05 512 000	Gelsenkirchen	8	17	24	54	48	
05 515 000		114					
05 515 000	Münster	114	318	273	323	326	3
	Kreise						
05 554 000	Borken	970	1 383	1 814	2 454	3 030	4 5
05 558 000	Coesfeld	666	806	953	1 062	1 339	1 6
05 562 000	Recklinghausen	301	459	525	676	850	9
05 566 000	Steinfurt	789	1 288	1 711	1 962	2 122	2 9
05 570 000	Warendorf	681	778	789	779	1 161	1 6
00 070 000	vvaichdon	001	770	703	773	1 101	
05 500 000	RegBez. Münster	3 528	5 073	6 093	7 368	8 913	12 1
	Kreisfreie Stadt						
05 711 000	Bielefeld	107	59	102	111	132	18
00 / / / 000	Bioloida			.02		.02	
	Kreise						
05 754 000	Gütersloh	520	893	1 296	1 411	1 533	2 2
05 754 000	Herford	105	142	189	214	346	4
05 762 000	Höxter	265	256	280	252	542	11
			256 448	280 467			
05 766 000	Lippe	299			508	812	1 2
05 770 000	Minden-Lübbecke	212	316	420	406	636	1 0
05 774 000	Paderborn	1 113	1 235	1 227	1 022	1 172	1 5
05 700 000	RegBez. Detmold	2 620	3 349	3 981	3 923	5 173	7 8
	Kreisfreie Städte						
05 911 000	Bochum	28	15	61	50	66	
05 913 000	Dortmund	25	79	49	88	95	1:
05 914 000	Hagen	18	16	33	11	41	
05 915 000	Hamm	30	49	54	98	86	1
05 916 000	Herne	14	8	37	34	37	
	Karina						
OF OF 4 OCC	Kreise	00	440	450	207	046	
05 954 000	Ennepe-Ruhr-Kreis	98	119	156	237	318	3
05 958 000	Hochsauerlandkreis	826	616	662	489	639	1 2
05 962 000	Märkischer Kreis	222	272	318	273	480	7
05 966 000	Olpe	103	41	62	60	60	
05 970 000	Siegen-Wittgenstein	106	57	46	35	62	1
05 974 000	Soest	586	493	609	504	781	1 2
05 978 000	Unna	126	191	261	248	393	6
05 000 000	RegBez. Arnsberg	2 182	1 956	2 348	2 127	3 057	4 8
		2 102	1 330	2 340	2 12/	3 037	40
	Nordrhein-Westfalen	16 529	19 653	21 703	22 748	27 715	38 2

Tabelle B3: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Kartoffeln in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche	l ,, ,, , ,, ,	1)	1)	Bericht:		2)	3)
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.				Fläche	in ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	53	85	46	57	26	
05 112 000	Duisburg	40	46	43	66	45	
05 113 000	Essen	60	137	78	31	29	
05 114 000	Krefeld	318	277	220	190	257	2
05 116 000	Mönchengladbach	498	654	625	625	673	5
05 117 000	Mülheim an der Ruhr	47	54	38	31	27	
05 119 000	Oberhausen	5	8	5	10	11	
05 120 000	Remscheid	5	2	1	1	_	
05 122 000	Solingen	7	5	6	6	5	
05 124 000	Wuppertal	11	22	16	16	2	
05 154 000	Kreise Kleve	2 744	4 013	4 666	5 069	5 397	5 5
05 154 000	Mettmann	282	282	258	213	177	1
05 162 000	Rhein-Kreis Neuss	1 915	2 525	2 273	2 133	1 997	2 2
05 166 000	Viersen	4 278	4 531	4 295	4 156	4 494	4 2
05 170 000	Wesel	733	828	846	769	985	8:
05 100 000	RegBez. Düsseldorf	10 994	13 468	13 416	13 373	14 126	14 0
	Kreisfreie Städte						
05 313 000	Aachen	7	30	29	26	24	
05 314 000	Bonn	17	15	19	7	4	
05 315 000	Köln	44	76	137	53	35	
05 316 000	Leverkusen	11	17	13	14	8	
OE 334 000	Kreise						_
05 334 000 05 354 000	Aachen, Städteregion Aachen	168	475	456	540	586	6
	Düren	1 835	3 073	3 119	3 185	3 499	3 3
05 358 000 05 362 000	Rhein-Erft-Kreis				1 914	1 934	
		1 075	1 595	1 741			18
05 366 000	Euskirchen	322	334	395	276	294	3
05 370 000 05 374 000	Heinsberg	1 702	2 762 32	2 955 24	2 691	2 674	2 4
	Oberbergischer Kreis Rheinisch-Bergischer Kreis	66 24	38	34	17 42	11 30	
05 378 000 05 382 000	Rhein-Sieg-Kreis	159	267	274	308	242	2
00 002 000	Talom Glog Faloic	.00	201		555		_
05 300 000	RegBez. Köln	5 428	8 714	9 197	9 071	9 340	8 8
	Kreisfreie Städte						
05 512 000	Bottrop	59	94	125	157	163	1:
05 512 000	Gelsenkirchen	4	5	8	6	16	
05 515 000	Münster	48	48	49	29	35	
00 0.0 000	Widneste.				20		
	Kreise						
05 554 000	Borken	1 416	1 870	1 919	2 010	1 883	1 8
05 558 000	Coesfeld	77	118	110	103	95	
05 562 000	Recklinghausen	399	447	417	392	397	3
05 566 000	Steinfurt	317	537	360	255	230	2
05 570 000	Warendorf	852	927	870	724	649	5
05 500 000	RegBez. Münster	3 172	4 046	3 859	3 676	3 468	3 3
05 744 000	Kreisfreie Stadt						
05 711 000	Bielefeld	48	53	83	81	91	
	Kreise						
05 754 000	Gütersloh	658	727	837	848	863	7
05 758 000	Herford	157	222	227	272	330	3
05 762 000	Höxter	53	73	74	54	45	
05 766 000	Lippe	126	182	175	266	452	4
05 770 000	Minden-Lübbecke	367	523	766	667	592	7
05 774 000	Paderborn	235	284	248	295	319	2
0E 700 000	Bog Boz Dotmold	1 644	2.064	2 440	2 402	2 602	2.7
	RegBez. Detmold	1 644	2 064	2 410	2 483	2 692	27
	Kreisfreie Städte						
05 911 000	Bochum	4	14	5	2	5	
05 913 000	Dortmund	23	10	24	43	49	
05 914 000	Hagen	7	3	2	2	2	
05 915 000	Hamm	35	33	73	25	27	
05 916 000	Herne	2	-	1	1	2	
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	95	113	113	93	66	
05 958 000	Hochsauerlandkreis	153	104	63	49	51	
05 962 000	Märkischer Kreis	93	107	126	130	122	1
05 966 000	Olpe	90	46	30	18	11	
05 970 000	Siegen-Wittgenstein	250	229	136	153	83	
05 974 000	Soest	409	513	985	1 053	1 114	1 1
05 978 000		306	401	589	618	581	6
05 900 000	RegBez. Arnsberg	1 466	1 573	2 148	2 186	2 114	2 1
05 000 non	Nordrhein-Westfalen	22 705	29 867	31 030	30 789	31 739	31 0

Tabelle B4: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Körnermais in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche	 	4)		Berichtsj		2)	2)
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.				Fläche in	ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	26	52	48	81	91	1:
05 112 000	Duisburg	71	105	91	51	45	15
05 113 000	Essen	129	84	88	47	23	
05 114 000	Krefeld	95	261	196	139	91	15
05 116 000	Mönchengladbach	38	48	74	38	25	
05 117 000	Mülheim an der Ruhr	78	91	53	16	9	
05 119 000	Oberhausen	8	6	30	30	7	
05 120 000	Remscheid	1	_	6	_	_	
05 122 000	Solingen	44	14	2	4	_	
05 124 000	Wuppertal	12	1	25	11	-	
	Kasis s						
05 154 000	Kreise Kleve	1 970	2 620	3 246	1 908	1 347	3.5
05 158 000	Mettmann	158	205	132	70	62	
05 162 000	Rhein-Kreis Neuss	403	680	693	842	430	6
05 166 000	Viersen	209	614	907	592	291	66
05 170 000	Wesel	1 862	1 992	2 164	1 817	1 365	2 50
05 400 000	5 5 5" 11 (
05 100 000	RegBez. Düsseldorf	5 107	6 773	7 755	5 646	3 786	8 03
	Kreisfreie Städte						
05 313 000	Aachen	-	7	9	2	_	
05 314 000	Bonn	0	5	3	2	0	
05 315 000	Köln	20	163	238	154	76	1.
05 316 000	Leverkusen	34	8	11	8	6	
	Kreise						
05 334 000	Aachen, Städteregion						
05 354 000	Aachen	27	41	25	21	_	
05 358 000	Düren	243	252	237	173	243	2
05 362 000	Rhein-Erft-Kreis	72	128	171	120	155	43
05 366 000	Euskirchen	97	83	80	95	77	2
05 370 000	Heinsberg	224	447	375	310	187	49
05 374 000	Oberbergischer Kreis	8	22	11	17	16	
05 378 000	Rheinisch-Bergischer Kreis	17	6	18	29	15	
05 382 000	Rhein-Sieg-Kreis	322	176	246	209	144	32
05 200 000	RegBez. Köln	1 063	1 338	1 424	4 420	920	2 0
05 300 000	RegBez. Rolli	1 003	1 336	1 424	1 139	920	2 0
	Kreisfreie Städte						
05 512 000	Bottrop	411	414	435	72	20	34
05 513 000 05 515 000	Gelsenkirchen Münster	19 1 993	31 1 763	37 2 191	27 882	44 800	2 50
03 313 000	Mulister	1 993	1703	2 191	302	800	2.50
	Kreise						
05 554 000	Borken	8 000	9 477	11 987	4 145	3 296	15 7
05 558 000	Coesfeld	10 013	10 956	13 429	2 024	1 719	13 93
05 562 000	Recklinghausen	2 331	2 328	2 536	1 337	1 096	2 8
05 566 000	Steinfurt	12 699	12 817	14 694	5 053	4 920	17 62
05 570 000	Warendorf	11 874	12 108	13 972	3 852	3 507	13 72
05 500 000	RegBez. Münster	47 340	49 893	59 281	17 392	15 401	66 86
	Kreisfreie Stadt						
05 711 000	Bielefeld	315	244	266	120	106	19
	Karia -						
05 754 000	Kreise	E 40E	5.045	0.000	3 818	0.400	0.0
	Gütersloh	5 465	5 815	6 206		3 493	6 9
05 758 000	Herford Höxter	928	680	616	319	114	2
05 762 000		249	264	249	182	137	3
05 766 000	Lippe Minden-Lübbecke	276	265	213	235	127	30
05 770 000 05 774 000	Paderborn	3 982 2 119	4 238 2 357	4 737 2 834	2 273 1 341	1 516 894	4 2: 3 5
00 11 1 000	r dderbern	2		2 00 .			0 0.
05 700 000	RegBez. Detmold	13 332	13 863	15 122	8 288	6 386	15 83
	Kreisfreie Städte						
05 911 000	Bochum	83	65	40	43	52	
05 913 000	Dortmund	224	151	176	125	110	10
05 914 000	Hagen	5	7	11	2	_	
05 915 000	Hamm	790	899	964	417	375	88
05 916 000	Herne	48	47	38	28	18	;
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	113	63	41	22	2	
05 958 000	Hochsauerlandkreis	74	30	32	41	42	1:
05 962 000	Märkischer Kreis	120	98	113	18	42	
05 966 000	Olpe	26	7	3	3	-	
05 970 000	Siegen-Wittgenstein	4	2	0	_	4	
05 974 000	Soest	2 730	2 771	2 956	1 304	949	2 5
05 978 000	Unna	1 563	1 655	1 917	726	642	19
	RegBez. Arnsberg		5 793			2 237	
UU UUU 8	NegDez. Arnsberg	5 780	5 /93	6 291	2 729	2 237	5 8
	1						

Tabelle B5: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Silomais in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.	-			Fläche			
	Kreisfreie Städte				07		
05 111 000	Düsseldorf	30	26	22	27	23	
05 112 000	Duisburg	171	133	113	109	93	_
05 113 000	Essen	286	261	290	159	110	1
05 114 000	Krefeld	181	152	156	154	170	2
05 116 000	Mönchengladbach	363	414	431	353	346	4
05 117 000	Mülheim an der Ruhr	112	42	81	78	64	
05 119 000	Oberhausen	67	52	41	32	54	
05 120 000	Remscheid	63	69	92	78	83	
05 122 000	Solingen	81	105	105	94	90	
5 124 000	Wuppertal	109	142	129	172	155	1
05 154 000	Kreise Kleve	12 643	12 886	13 204	12 084	12 843	14 (
05 158 000	Mettmann	476	396	350	368	397	
05 162 000	Rhein-Kreis Neuss	959	926	875	676	1 254	1.2
05 166 000	Viersen	4 181	4 054	4 152	3 910	4 010	4 3
5 170 000	Wesel	8 231	8 568	8 402	7 718	7 845	8 4
5 100 000	RegBez. Düsseldorf	27 952	28 226	28 443	26 012	27 536	29 9
	Kreisfreie Städte						
5 313 000	Aachen	276	319	304	322	377	
05 314 000	Bonn	74	69	37	29	17	
5 315 000	Köln	26	16	29	15	159	
5 316 000	Leverkusen	79	114	114	99	126	
	Kreise						
5 334 000	Aachen, Städteregion						1:
05 354 000	Aachen	602	664	661	680	1 001	
05 358 000	Düren	800	1 094	1 198	1 105	1 521	2:
05 362 000	Rhein-Erft-Kreis	173	205	179	225	641	1.2
05 366 000	Euskirchen	1 024	975	766	788	1 054	1 (
05 370 000	Heinsberg	3 571	3 883	4 179	3 830	4 561	4 4
05 374 000	Oberbergischer Kreis	638	750	876	906	1 093	1.5
5 378 000	Rheinisch-Bergischer Kreis	734	714	766	749	935	7
5 382 000	Rhein-Sieg-Kreis	1 718	1 727	1 663	1 617	2 033	2 4
5 300 000	RegBez. Köln	9 714	10 530	10 771	10 363	13 519	16 3
	Kreisfreie Städte						
05 512 000	Bottrop	458	423	363	400	529	(
05 513 000	Gelsenkirchen	120	108	138	149	143	
05 515 000	Münster	1 995	1 907	1 685	1 558	1 733	1 (
	Kreise						
05 554 000	Borken	24 836	25 081	24 631	21 375	23 744	23 2
05 558 000	Coesfeld	10 240	9 635	8 701	7 450	8 240	8 1
05 562 000	Recklinghausen	4 053	4 053	3 843	3 746	4 627	4 2
5 566 000	Steinfurt	25 061	23 157	20 343	18 137	20 358	20
05 570 000	Warendorf	11 714	10 882	9 757	8 790	9 608	9 8
5 500 000	RegBez. Münster	78 477	75 245	69 462	61 604	68 982	68
	Kreisfreie Stadt						
05 711 000	Bielefeld	467	480	480	497	609	
	Kreise						
05 754 000	Gütersloh	8 957	8 047	7 591	6 949	7 591	8
05 758 000	Herford	1 143	888	738	607	1 014	1 4
5 762 000	Höxter	2 666	2 509	2 529	2 278	3 563	5 :
05 766 000	Lippe	1 724	1 702	1 508	1 263	2 083	3 :
05 770 000 05 774 000	Minden-Lübbecke Paderborn	6 895 5 493	5 870 4 786	4 959 4 602	4 305 4 188	5 206 5 256	6 : 5 :
	RegBez. Detmold	27 343	24 282	22 406	20 087	25 322	30
100 000		21 343	£4 Z0Z	22 400	20 007	23 322	30
05.044.00-	Kreisfreie Städte			0.5	200		
05 911 000	Bochum	48	51	26	21	8	
05 913 000	Dortmund	386	346	403	343	304	4
5 914 000	Hagen	70	86	108	96	92	
5 915 000 5 916 000	Hamm Herne	1 072 43	1 055 23	971 5	850 2	824 8	!
	Kreise						
5 954 000	Ennepe-Ruhr-Kreis	644	600	754	808	937	1
05 954 000	Hochsauerlandkreis	1 021	1 135	1 326	1 459	1 998	2
5 962 000	Märkischer Kreis	1 101	1 173	1 140	1 204	1 249	1
5 962 000 5 966 000	Olpe	205	164	183	1 204	239	1 .
5 970 000	Siegen-Wittgenstein	92	92	95	113	99	
5 974 000	Soest	3 456	3 637	3 375	3 052	3 903	4
05 974 000	Unna	2 500	2 159	1 885	1 662	1 606	2
05 900 000	RegBez. Arnsberg	10 637	10 521	10 271	9 802	11 267	14 :
05 000 000	Nordrhein-Westfalen	154 124	148 804	141 353	127 868	146 625	159

Tabelle B6: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Triticale in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche	<u> </u>	. I	, Т	Berichts			m1
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	20072)	2010 ³⁾
Nr.		<u>'</u>		Fläche i	n ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	6	8	12	31	38	:
05 112 000	Duisburg	134	154	128	159	115	1
05 113 000	Essen	3	36	63	88	130	
05 114 000	Krefeld	22	23	39	136	107	
05 116 000	Mönchengladbach	23	46	55	72	53	
05 117 000	Mülheim an der Ruhr	29	9	65	89	87	
05 119 000	Oberhausen	10	25	34	59	58	
05 120 000	Remscheid	27	41	44	42	51	
05 122 000	Solingen	7	67	34	48	30	
05 124 000	Wuppertal	14	32	33	63	40	
05 154 000	Kreise Kleve	2 889	2 583	1 637	2 173	1 207	9
05 154 000	Mettmann	69	190	275	310	231	2
05 162 000	Rhein-Kreis Neuss	97	295	470	495	380	4
05 166 000	Viersen	269	339	285	322	203	_
05 170 000	Wesel	2 507	2 971	2 555	3 197	2 359	2 3
05 100 000	RegBez. Düsseldorf	6 104	6 819	5 728	7 285	5 091	4 6
	Kreisfreie Städte						
05 313 000	Aachen	-	6	21	34	43	
05 314 000	Bonn	_	0	0	0	-	
05 315 000	Köln	70	28	91	67	37	
05 316 000	Leverkusen	_	7	28	41	39	
	Kreise						
05 334 000	Aachen, Städteregion						
05 354 000	Aachen	10	130	120	112	76	
05 358 000	Düren	85	138	379	376	240	1
05 362 000	Rhein-Erft-Kreis	93	189	376	379	71	
05 366 000	Euskirchen	126	368	633	563	447	5
05 370 000	Heinsberg	53	132	525	499	303	2
05 374 000	Oberbergischer Kreis	134	156	69	143	88	1
05 378 000	Rheinisch-Bergischer Kreis	7	49	23	54	30	
05 382 000	Rhein-Sieg-Kreis	60	160	156	257	236	3
05 300 000	RegBez. Köln	637	1 364	2 420	2 525	1 610	17
	14 : 4 : 6: 11						
05 540 000	Kreisfreie Städte	477	70	74	447	20	
05 512 000	Bottrop	177	73	71	117	30	
05 513 000	Gelsenkirchen	66	72	61	66	27	:
05 515 000	Münster	620	870	581	1 043	800	8-
	Kreise						
05 554 000	Borken	4 734	5 435	4 423	5 483	3 486	3 9
05 558 000	Coesfeld	2 882	3 055	2 233	2 078	1 248	1 3
05 562 000	Recklinghausen	1 615	1 679	1 540	1 305	822	9
05 566 000	Steinfurt	9 268	10 421	8 336	12 086	9 538	11 2
05 570 000	Warendorf	3 480	4 666	4 329	5 581	4 348	5 0
05 500 000	RegBez. Münster	22 841	26 270	21 573	27 759	20 298	23 4
	Kreisfreie Stadt						
05 711 000	Bielefeld	477	437	300	484	396	3
	Kreise						
05 754 000	Gütersloh	3 192	3 738	3 140	4 775	4 545	5 0
05 758 000	Herford	641	746	662	709	721	7
05 762 000	Höxter	432	1 120	1 447	1 856	2 015	2 2
05 766 000	Lippe	1 858	1 235	1 726	1 947	1 808	1 7
05 770 000	Minden-Lübbecke	5 625	6 431	5 842	7 380	7 423	8 0
05 774 000	Paderborn	1 338	1 921	2 407	3 709	3 789	4 2
05 700 000	RegBez. Detmold	13 563	15 629	15 525	20 860	20 698	22 4
	Kreisfreie Städte						
05 911 000	Bochum	20	40	73	86	12	
05 913 000	Dortmund	30	77	66	50	53	
05 914 000	Hagen	19	28	12	26	_	
05 915 000	Hamm	227	452	315	391	260	2
5 916 000	Herne	19	17	26	10	5	
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	85	147	101	123	146	1
05 958 000	Hochsauerlandkreis	301	726	715	1 064	767	9
05 962 000	Märkischer Kreis	132	308	224	276	194	1
05 966 000	Olpe	26	52	50	80	56	
05 970 000	Siegen-Wittgenstein	73	78	46	52	48	
05 974 000	Soest	621	986	1 229	2 145	2 056	2 7
05 978 000	Unna	798	1 049	698	835	610	5
			3 960	3 556	5 138	4 208	4 9
05 900 000	RegBez. Arnsberg	2 350	3 900	3 330	3 130	4 200	7.5

Tabelle B7: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Wintergerste in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

	l –			Berichtsj			
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.		I .		Fläche in	ı ha	l .	
05 111 000	Kreisfreie Städte	287	255	330	368	358	3:
05 111 000	Düsseldorf	385	274	274	293	358	3
	Duisburg						
05 113 000	Essen	306	287	282	350	315	3
05 114 000	Krefeld	397	230	154	249	294	2
05 116 000	Mönchengladbach	832	427	258	347	449	4
05 117 000	Mülheim an der Ruhr	129	59	82	94	102	1.
05 119 000	Oberhausen	56	47	20	32	29	
05 120 000	Remscheid	141	79	66	67	77	
05 122 000	Solingen	129	90	71	79	103	
05 124 000	Wuppertal	178	162	132	148	120	1
	Kreise						
05 154 000	Kleve	6 421	4 622	2 805	3 304	3 404	3 4
05 158 000	Mettmann	1 872	1 334	1 306	1 633	1 524	1 4
05 162 000	Rhein-Kreis Neuss	2 736	1 428	1 007	2 009	2 381	1 9
05 166 000		2 108	1 320	663	997	1 083	1 0
05 170 000		6 105	4 620	3 216	3 906	4 309	4 1
05 100 000	RegBez. Düsseldorf	22 082	15 235	10 665	13 875	14 905	14 2
JS 100 000	RegBez. Dusseldon	22 062	15 235	10 665	13 6/3	14 905	14 2
05.040.05	Kreisfreie Städte	200	1==	100		105	
05 313 000	Aachen	286	155	122	115	130	
05 314 000	Bonn	170	73	68	119	114	1
05 315 000	Köln	1 246	694	668	907	922	1 0
05 316 000	Leverkusen	91	45	34	54	55	1
	Kreise						
05 334 000	Aachen, Städteregion						5
05 354 000	Aachen	1 116	519	373	508	592	
05 358 000	Düren	6 056	3 317	2 952	3 672	4 710	3.5
05 362 000	Rhein-Erft-Kreis	5 157	2 474	2 298	3 314	4 393	3 1
05 366 000	Euskirchen	3 298	2 249	2 199	2 799	3 595	2 7
5 370 000	Heinsberg	3 807	2 203	1 945	2 379	2 979	2 7
05 374 000	Oberbergischer Kreis	475	369	186	229	194	1
				128	125		
05 378 000 05 382 000		353 3 442	216 2 159	1 641	2 181	163 2 773	2 3
					40.404		
J5 300 000	RegBez. Köln	25 497	14 473	12 616	16 401	20 619	16 6
	Kreisfreie Städte						
05 512 000	Bottrop	483	310	201	349	315	3
05 513 000	Gelsenkirchen	165	93	62	76	60	
05 515 000	Münster	2 938	2 079	1 717	2 092	1 883	1 6
	Kreise						
05 554 000	Borken	13 853	9 971	5 877	11 273	11 336	10 1
05 558 000	Coesfeld	14 061	10 081	8 969	11 029	10 852	10 1
05 562 000		5 523	3 850	3 231	3 907	3 642	3 4
05 566 000	Steinfurt	15 535	13 015	11 509	15 306	15 796	14 2
05 570 000	Warendorf	18 811	13 667	13 844	15 328	14 790	14 7
33 370 000	Wateridon	10 011	13 007	13 044	13 328	14 790	14 /
5 500 000	RegBez. Münster	71 369	53 067	45 410	59 360	58 673	54 7
	Kreisfreie Stadt						
05 711 000	Bielefeld	1 410	1 144	1 003	967	972	8
	Kreise						
5 754 000	Gütersloh	10 780	9 129	7 369	8 328	8 279	7 3
5 758 000	Herford	5 856	5 444	5 130	4 898	4 470	4 1
5 762 000	Höxter	12 547	11 878	11 106	10 355	10 777	10 1
5 766 000	Lippe	10 735	9 707	9 494	9 228	8 659	8.5
5 770 000	Minden-Lübbecke	15 475	13 680	12 966	12 037	11 682	10 8
5 774 000	Paderborn	13 631	11 754	10 703	10 708	9 587	8.9
5 700 000	RegBez. Detmold	70 434	62 737	57 772	56 521	54 425	50 8
		. 0 -0-7	52.757	J. 772	55 52 1	34 423	55 (
DE 044 005	Kreisfreie Städte	100	200	200	24.	225	-
05 911 000	Bochum	409	268	289	314	276	3
05 913 000	Dortmund	1 109	739	673	793	733	ε
5 914 000	Hagen	291	158	126	107	115	
5 915 000	Hamm	2 280	1 662	1 643	1 742	1 730	1 8
5 916 000	Herne	95	65	70	80	76	
	Kreise						
5 954 000		1 107	821	655	690	574	
5 958 000		4 535	3 510	3 188	3 031	3 349	3 2
5 962 000		2 380	1 865	1 676	1 607	1 650	1.5
5 966 000	Olpe	494	412	284	304	223	2
5 970 000	Siegen-Wittgenstein	274	191	106	99	104	40.1
5 974 000 5 978 000		16 539 5 097	13 361 3 495	12 867 3 472	13 418 3 972	13 069 4 121	12 3
5.5 550							
			26 547	25 050	26 158	26 017	25 3
05 900 000	RegBez. Arnsberg	34 610	20 347	25 050	20 .00	20 0	20 (

Tabelle B8: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Winterraps in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche	 			Berichts		ı	
Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.		Į		Fläche i	n ha	Į	
	Kreisfreie Städte						
05 111 000	Düsseldorf	155	108	80	70	156	1
05 112 000	Duisburg	112	57	69	117	150	1
05 113 000	Essen	139	93	122	142	214	1
05 114 000	Krefeld	27	11	1	11	78	
05 116 000	Mönchengladbach		-	27	24	161	1
05 117 000	Mülheim an der Ruhr	82	39	28	21	92	
05 119 000	Oberhausen	7	10	7	14	21	
05 120 000	Remscheid	36	31	4	37	19	
05 122 000	Solingen	15	15	12	4	13	
05 124 000	Wuppertal	94	47	35	36	79	
	Kreise						
05 154 000	Kleve	1 078	614	392	908	1 955	1 6
05 158 000	Mettmann	1 071	709	895	915	1 239	1 3
05 162 000	Rhein-Kreis Neuss	98	178	154	263	735	5
05 166 000	Viersen	53	28	26	18	59	
05 170 000	Wesel	538	305	196	301	1 041	9
		0.504			2 224		
<i>J</i> 5 100 000	RegBez. Düsseldorf	3 504	2 245	2 047	2 881	6 013	5 4
	Kreisfreie Städte						
05 313 000	Aachen	-	14	21	24	75	
05 314 000	Bonn	-	_	_	_	34	
05 315 000	Köln	66	61	64	112	267	3
05 316 000	Leverkusen	52	_	1	6	31	
	Kreise						
05 334 000	Aachen, Städteregion						2
05 354 000	Aachen	15	45	45	38	148	
05 358 000	Düren	809	786	960	953	2 406	2.0
							2.8
05 362 000	Rhein-Erft-Kreis	139	101	66	75	1 165	1 4
05 366 000	Euskirchen	1 234	907	1 139	1 387	2 436	2.5
05 370 000	Heinsberg	35	92	197	154	1 096	1 0
05 374 000	Oberbergischer Kreis	3			_	5	
5 378 000	Rheinisch-Bergischer Kreis	7	28	26	18	36	_
05 382 000	Rhein-Sieg-Kreis	245	179	285	363	838	8
05 300 000	RegBez. Köln	2 604	2 215	2 804	3 129	8 537	9 4
05 512 000	Kreisfreie Städte	17		26	27		
	Bottrop		64	26	21	_	
05 513 000 05 515 000	Gelsenkirchen Münster	11 91	122	103	208	493	2
	Kreise						
05 554 000	Borken	232	462	200	419	727	2
05 558 000	Coesfeld	1 756	1 867	1 623	2 253	3 551	2.2
05 562 000	Recklinghausen	627	428	331	475	714	6
05 566 000	Steinfurt	748	965	982	1 537	1 634	8
05 570 000	Warendorf	2 800	2 209	2 683	2 593	4 738	3 5
05 500 000	RegBez. Münster	6 282	6 117	5 948	7 512	11 857	7 8
05 711 000	Kreisfreie Stadt Bielefeld	484	294	299	435	471	
3 711 000	Bieleield	404	234	299	433	4/1	•
	Kreise	0.40	000		F 40		
5 754 000	Gütersloh	610	396	515	543	1 074	
5 758 000	Herford	2 167	1 661	2 199	2 219	2 779	2 2
5 762 000	Höxter	7 443	5 105	5 174	5 881	7 241	7 2
5 766 000	Lippe	6 218	4 879	5 896	5 747	6 908	7 (
5 770 000	Minden-Lübbecke	3 496	3 015	4 039	3 846	5 870	5
5 774 000	Paderborn	6 130	4 492	5 258	4 765	5 211	5 6
05 700 000	RegBez. Detmold	26 548	19 843	23 381	23 436	29 554	29 2
044.00-	Kreisfreie Städte	05.	100	205		055	
05 911 000	Bochum	254	168	205	231	252	2
05 913 000	Dortmund	545	420	471	415	531	5
5 914 000	Hagen	55	57	32	45	52	
5 915 000	Hamm	417	390	495	594	905	(
5 916 000	Herne	13	14	18	30	35	
	Kreise						
5 954 000	Ennepe-Ruhr-Kreis	294	237	215	296	335	2
05 958 000	Hochsauerlandkreis	2 242	1 780	1 769	1 801	2 020	2 (
05 962 000	Märkischer Kreis	1 063	622	708	768	811	9
05 966 000	Olpe	52	62	62	74	43	
05 970 000	Siegen-Wittgenstein	11	0	1	8	-	
05 974 000	Soest	8 803	6 932	7 688	7 598	9 446	8 5
05 978 000	Unna	2 162	1 876	1 859	2 059	2 598	2 4
05 900 000	RegBez. Arnsberg	15 910	12 557	13 521	13 918	17 027	16 0
DE 000 000	Nordrhein-Westfalen	F	40.000	4	F2 0==	70.005	
	inorurnein-westfalen	54 848	42 977	47 701	50 877	72 988	68

Tabelle B9: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Winterweizen in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche Schlüssel-	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	Berichts 1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
Nr.	verwaiturigsbezirk	1991	1995			2007	2010
141.				Fläche i	n ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	797	760	637	710	649	63
05 112 000	Duisburg	546	507	560	504	421	42
05 113 000	Essen	662	710	489	531	565	52
05 114 000	Krefeld	910	767	709	643	689	76
05 114 000	Mönchengladbach	1 806	1 673	1 686	1 767	1 690	1 80
05 117 000	Mülheim an der Ruhr	307	285	273	233	214	2-
05 119 000	Oberhausen	47	34	27	34	36	
05 120 000	Remscheid	50	45	44	67	60	
05 122 000	Solingen	156	141	127	131	133	1:
05 124 000	Wuppertal	213	216	192	171	259	2
	Kreise						
05 154 000	Kleve	8 035	8 351	7.057	8 947	9 834	10 4
				7 257			
05 158 000	Mettmann	3 292	3 150	2 731	2 911	2 763	27
05 162 000	Rhein-Kreis Neuss	8 907	8 485	8 071	8 824	8 202	9 2
05 166 000	Viersen	4 225	4 290	3 221	4 306	4 415	4 4
05 170 000	Wesel	4 970	4 976	4 387	4 795	5 540	6 0
DE 400 000	Dan Bar Bürrelderf	24.024	24 200	20.444	24 575	25 400	20.0
J5 100 000	RegBez. Düsseldorf	34 924	34 388	30 411	34 575	35 468	38 0
	Kreisfreie Städte						
05 313 000	Aachen	673	641	674	792	702	
05 314 000	Bonn	215	202	173	210	183	1
05 314 000	Köln	2 254	2 178	2 187	2 314	1 869	26
05 316 000	Leverkusen	261	241	173	239	197	3
		201	271	173	203	137	
	Kreise						
05 334 000	Aachen, Städteregion						4 5
05 354 000	Aachen	2 844	3 167	3 037	3 341	3 367	
05 358 000	Düren	16 466	17 003	17 497	18 021	16 923	18 7
05 362 000	Rhein-Erft-Kreis			12 281			
		11 711	12 239		12 512	12 116	12 7
05 366 000	Euskirchen	8 710	8 744	8 576	8 624	8 057	8.8
05 370 000	Heinsberg	10 551	10 482	10 811	11 238	10 920	11 4
05 374 000	Oberbergischer Kreis	202	250	133	124	186	2
05 378 000	Rheinisch-Bergischer Kreis	419	414	285	311	325	3
05 382 000	Rhein-Sieg-Kreis	7 183	7 327	6 639	6 736	6 358	6 8
OE 200 000	RegBez. Köln	61 490	62 888	62 466	64 463	61 202	66 9
05 300 000	RegBez. Kolli	61 490	02 000	02 400	04 463	61 202	00 9
	Kreisfreie Städte						
05 512 000	Bottrop	216	262	187	200	174	2:
05 512 000	Gelsenkirchen	10	45	50	74	81	
05 515 000	Münster	2 244	2 214	1 767	2 340	2 623	2 8
	Kreise						
05 554 000	Borken	3 721	4 087	3 473	5 569	8 264	8 1
05 558 000	Coesfeld	15 196	16 598	14 253	17 498	20 348	21 3
05 562 000	Recklinghausen	2 178	2 034	1 899	2 581	2 649	3 2
05 566 000	Steinfurt	5 525	5 756	4 717	6 868	9 952	10 5
05 570 000	Warendorf	16 913	17 400	14 281	17 241	19 592	20 8
05 500 000	RegBez. Münster	46 004	48 397	40 627	52 371	63 682	67 2
05 500 000	RegBez. Wurister	40 004	40 397	40 027	32 37 1	03 002	07 2
	Kreisfreie Stadt						
05 711 000	Bielefeld	1 201	1 286	978	1 200	1 168	1 2
05 754 000	Kreise Gütersloh	2 815	2 826	2 002	2 839	3 734	4 1
05 758 000	Herford	5 580	5 442	4 397	5 467	5 550	5 5
05 762 000	Höxter	17 504	17 716	15 739	18 666	18 710	19 6
05 766 000	Lippe	12 655	12 785	12 237	14 438	14 275	15 0
05 770 000	Minden-Lübbecke	8 452	8 801	7 169	9 241	10 941	11 2
05 774 000	Paderborn	10 951	10 943	9 310	10 680	10 837	11 3
05 700 000	Dan Dan Datus ald	50.450	F0 700	F4 000	CO FOO	CE 045	60.4
05 700 000	RegBez. Detmold	59 159	59 799	51 832	62 529	65 215	68 1
	Kreisfreie Städte						
05 911 000	Bochum	457	511	441	495	487	5
05 913 000	Dortmund		1 596	1 415	1 555		
		1 738				1 291	1 3
05 914 000	Hagen	209	236 2 722	108	162	209	2
05 915 000	Hamm	2 524		2 344	2 768	3 017	3 1
05 916 000	Herne	90	99	126	108	120	1
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	1 135	1 215	906	965	998	13
05 958 000	Hochsauerlandkreis	3 522	3 793	2 700	3 400	4 123	4 3
05 962 000	Märkischer Kreis	2 353	2 305	1 610	2 008	2 076	2 1
05 966 000	Olpe	306	258	201	234	274	
							2
05 970 000	Siegen-Wittgenstein	232	186	73	86	91	00.0
05 974 000	Soest	21 269	21 760	19 281	21 348	21 702	22 2
05 978 000	Unna	6 751	6 819	5 907	6 732	6 968	7 3
05 900 000	RegBez. Arnsberg	40 586	41 499	35 111	39 861	41 356	43 1
22 200 000	g. Boz. Amsberg	40 JOB	41 433	33 111	39 001	41 330	43 1
05 000 000	Nordrhein-Westfalen	242 162	246 972	220 447	253 798	266 922	283 5

Tabelle B10: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Anbauflächen für Zuckerrüben in Nordrhein-Westfalen nach kreisfreien Städten und Kreisen*)

Amtliche Schlüssel-	\/onwoltun==b==i=b	40041)	40051)	Bericht:		20072)	204.23)
Schlüssel- Nr.	Verwaltungsbezirk	1991 ¹⁾	1995 ¹⁾	1999 ²⁾	2003 ²⁾	2007 ²⁾	2010 ³⁾
INI.				Fläche	in ha		
	Kreisfreie Städte						
05 111 000	Düsseldorf	365	383	415	360	281	32
05 112 000	Duisburg	227	198	202	189	149	10
05 113 000	Essen	123	80	114	93	94	5
05 114 000	Krefeld	582	563	510	475	401	31
05 114 000		1 595	1 516	1 520	1 393	1 151	1 02
	Mönchengladbach						
05 117 000	Mülheim an der Ruhr	51	20	37	38	22	1
05 119 000	Oberhausen			_	_		
05 120 000	Remscheid	1	_	-	_	_	
05 122 000	Solingen	7	8	10	8	_	
05 124 000	Wuppertal	12	14	12	13	9	
	Kreise						
05 154 000	Kleve	4 807	4 672	4 631	4 131	4 083	3 30
05 158 000	Mettmann	1 188	1 082	1 008	965	822	58
05 162 000	Rhein-Kreis Neuss	7 671	7 319	7 011	6 923	5 763	5 23
05 166 000	Viersen	3 908	3 687	3 644	3 466	2 880	2 23
05 170 000	Wesel	2 013	2 012	1 979	1 658	1 458	1 24
35 170 000	vvesei	2013	2012	1979	1 636	1 436	1 24
05 100 000	RegBez. Düsseldorf	22 547	21 554	21 094	19 713	17 115	14 44
	Kreisfreie Städte						
05 313 000	Aachen	358	354	332	315	262	
05 314 000	Bonn	108	100	76	106	88	8
05 315 000	Köln	1 672	1 696	1 712	1 509	1 219	1 05
05 316 000	Leverkusen	109	89	110	106	69	9
	Kreise						
05 334 000	Aachen, Städteregion						2 00
05 354 000	Aachen	2 357	2 309	2 157	2 118	1 953	
05 358 000	Düren	12 821	12 714	12 412	11 604	10 126	8 83
05 362 000	Rhein-Erft-Kreis	10 131	10 241	9 872	9 023	8 018	6 93
		4 291	4 215				
05 366 000	Euskirchen			4 081	3 842	3 471	2 81
05 370 000	Heinsberg	9 191	9 010	8 868	8 279	7 308	6 44
05 374 000	Oberbergischer Kreis	1	7	3	5	8	
05 378 000	Rheinisch-Bergischer Kreis	22	29	28	28	25	2
05 382 000	Rhein-Sieg-Kreis	3 802	3 477	3 462	3 185	2 812	2 57
05 300 000	RegBez. Köln	44 863	44 241	43 112	40 121	35 359	30 87
	Kreisfreie Städte						
05 512 000	Bottrop	_	_	1	_	_	
05 513 000	Gelsenkirchen	5	5	5	6	4	
05 515 000	Münster	17	16	16	22	16	
33 313 000	Wanster	.,,	10	10	22	10	
	Kreise						
05 554 000	Borken	761	716	688	641	675	40
05 558 000	Coesfeld	289	248	266	221	181	14
05 562 000	Recklinghausen	92	81	76	54	62	
		111		97	86		3
05 566 000	Steinfurt		97			52	
05 570 000	Warendorf	98	96	78	63	60	2
05 500 000	RegBez. Münster	1 372	1 259	1 227	1 093	1 050	64
30 000 000	reg. bez. munser	1 3/2	1 233		1 055	1 050	
	Kreisfreie Stadt						
05 711 000	Bielefeld	297	286	279	248	255	21
	Kreise						
05 754 000	Gütersloh	206	248	242	202	196	14
05 754 000	Herford	469	480	442	415	465	46
05 762 000	Höxter	2 982	2 765	2 770	2 421	2 244	2 22
05 766 000	Lippe	2 470	2 306	2 385	2 291	2 298	2 0
05 770 000	Minden-Lübbecke	315	292	292	260	405	38
05 774 000	Paderborn	280	233	245	147	135	12
05 700 000	RegBez. Detmold	7 020	6 611	6 654	5 095	5 009	5 56
05 700 000	RegBez. Detiliold	7 020	6 611	6 654	5 985	5 998	5 50
	Kreisfreie Städte						
05 911 000	Bochum	_	_	_	_	_	
05 913 000	Dortmund	114	62	62	67	49	4
05 914 000	Hagen		U.E.	02	0.		
05 914 000	Hamm	211	166	166	152	130	10
5 915 000 5 916 000	Hamm Herne	217	100	100	152	130	10
2 2 10 000	riellie	-	_	_	_	-	
	Kreise						
05 954 000	Ennepe-Ruhr-Kreis	4	_				
05 954 000 05 958 000	Hochsauerlandkreis		3	1	81	-	(
		6				83	
05 962 000	Märkischer Kreis	47	29	17	16	11	
05 966 000	Olpe	2	2	-	_		
05 970 000	Siegen-Wittgenstein	0	1		_		
05 974 000	Soest	2 958	2 702	2 605	2 404	2 012	1 78
05 978 000	Unna	404	355	324	281	211	19
35 900 000	RegBez. Arnsberg	3 745	3 320	3 175	3 002	2 496	2 21
05 000 000	Nordrhein-Westfalen	79 548	76 984	75 262	69 913	62 018	53 74

Tabelle B11: (zu Frage 2) Bodennutzungshaupterhebungen 1991– 2010: Hinweise zur Statistik

- *) Die Flächen werden regional nach dem Betriebssitz zugeordnet; d.h. sämtliche Flächen eines Betriebes werden in der Kommune nachgewiesen, in der dieser Betrieb seinen Hauptsitz hat. –
- Flächen von landwirtschaftlichen Betrieben mit mindestens 1 Hektar landwirtschaftlich genutzter Fläche sowie von Betrieben, deren natürliche Erzeugungseinheiten dem durchschnittlichen Wert einer jährlichen Markterzeugung von 1 Hektar landwirtschaftlich genutzter Fläche entspachen –
- 2) Flächen von landwirtschaftlichen Betrieben mit mindestens 2 Hektar landwirtschaftlich genutzter Fläche sowie von Betrieben, deren natürliche Erzeugungseinheiten dem durchschnittlichen Wert einer jährlichen Markterzeugung von 2 Hektar landwirtschaftlich genutzter Fläche entspachen –
- 3) Flächen von landwirtschaftlichen Betrieben mit mindestens 5 Hektar landwirtschaftlich genutzter Fläche sowie von Betrieben, mit pflanzlichen (Mindestanbauflächen für Sonderkulturen) oder tierischen (Mindesttierbestände) Mindesterzeugungseinheiten.

Tabelle B12: (zu Frage 3) Agrarberichterstattung 1974/75 sowie Landwirtschaftszählungen 1979, 1991, 1999 und 2010: Dauergrünland der landwirtschaftlichen Betriebe sowie prozentualer Anteil des Dauergrünlandes an der landwirtschaftlich genutzten Fläche (LF)

05 112 000 05 112 000 05 112 000 05 112 000 05 114 000 05 114 000 05 114 000 05 114 000 05 114 000 05 117 000 15 117 000 15 117 000 15 117 000 15 117 000 05 117 000	Verwaltungsbezirk Verwaltungsbezirk Düsseldorf Düsbung Essen Kreleld Mönchengladbach Mündenin an der Ruhr Oberhausen Remscheid Solingen Wuppertal reise Kleve Mettmann Rhein-Kreis Neuss Viersen Wesel Leg-Bez-Düsseldorf reisferie Städte Aachen Born Köln Lenerkusen reisie Rein-Firt-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rhein-Sieg-Kreis	Dauer- grünland in ha 1 321	%-Anteil an der LF 20,9 35,5 24,5 19,8 15,0 37,5 36,3 64,6 56,0 40,0 40,0 40,0 31,7 67,7 67,7 62,0 7,6 31,4	Dauer- grünland in ha 844 1 244 888 905 1 102 665 339 1 347 1 233 2 033 2 033 2 033 77 444 4 349 4 349 4 349 2 912 7 374 4 367 4 367 6 36	%-Anteil an der LF 18.1 13.2 24.9 18.8 14.8 22.6 41.1 66.3 59.9 59.9 37.4 24.5 8.4 17.0 40.7 30.0 67.1 23.6 7.8 30.3	Dauer- grünland in ha 768 966 721 564 741 613 255 1078 917 1742 25 383 3 669 2 1111 4 846 22 402 3 828 3 828 3 828 567	%-Anteil an der LF 21,1 29,4 22,4 13,4 10,9 33,5 38,8 67,1 55,6 63,2 33,0 23,8 6,7 16,1 37,2 27,1	Dauer- grünland in ha 862 1170 942 488 698 704 4206 973 788 1 820 23 724 3 635 2 1677 4 317 18 949 61 444	%-Anteil an der LF 23.7 35.4 28.3 14.0 10.9 41.7 37.4 68.8 56.0 66.6 32.1 26.5 7.4 15.2 36.7 27.3 67.1 46.1 7.1 39.0	Dauer- grünland in ha 860 1 116 860 1 1177 7 117 806 85 85 172 174 8 1705 1705 1705 1705 18 164 85 85 85 85 85 85 85 85 85 85 85 85 85	%-Anteil an der LF 25.4 36.9 37.1 19.3 13.2 45.5 37.0 69.2 55.1 63.3 29.4 29.4 8.5 14.4 26.8	gegenüber ha - 461 - 419 + 261 - 279 - 350 - 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044 - 18	% - 34, - 27, - 428, - 28, - 30, - 17, - 47, - 31, - 22, - 23, - 16, - 19, - 35, - 31, - 31, - 44, - 12, - 44, - 12, - 44, -
05 112 000 05 112 000 05 112 000 05 112 000 05 114 000 05 114 000 05 114 000 05 114 000 05 114 000 05 117 000 15 117 000 15 117 000 15 117 000 15 117 000 05 117 000	Düsseldorf Duisburg Essen Krefeld Mönchengladbach Müheim an der Ruhr Oberhausen Remscheid Solingen Wuppertal Kreise Klewe Mettmann Rhein-Kreis Neuss Viersen Wesel LegBez. Düsseldorf Kreisfreis Städte Aachen Bonn Köh Leverkusen Leverkusen Leverkusen Leverkusen Leverkusen Cherhein-Kreis Euskirchen Heinsberg Oberbergischer Kreis	1 321 1 535 996 996 833 3299 1 381 337 33 733 4 421 3 063 6 195 26 596 85 638 85 638 10 726 868	\$5,5 24,5,5 19,8 19,8 19,8 19,8 15,0	844 1 244 858 905 1 102 665 339 1 347 1 233 2 033 2 033 2 033 2 912 2 4 033 77 444 4 317 4 21 7 38 635	33.2 (24.9 18.8 18.8 14.8 12.6 (6.4 14.1 14.8 14.8 14.1 14.8 14.1 14.8 14.1 14.1	768 966 966 721 1 564 741 1 613 255 1 078 917 1 742 25 383 3 689 2 111 4 846 20 402 5 402 5 3 828 3 322 462 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	29,4 22,4 13,4, 10,9 33,5,5 38,8 67,1 55,6 63,2 23,8 6,7 16,1,1 37,2 27,1	862 1 170 942 488 698 704 206 973 788 1 820 2 167 4 317 1 8 949 61 444 3 999 61 444	35.4 28.3 14.0 10.9 41.7. 37.4 68.8 56.0 66.6 32.1 26.5 7.4 15.2 36.7 27.3	860 1 116 1 177 717 806 685 1722 949 748 1 705 2 1 359 2 1 359 2 2 467 3 979 18 164 58 594	36,9 37,1 19,3 13,2 45,5 37,0 69,2 55,1 63,3 29,4 8,5 14,4 36,4	- 461 - 419 + 261 - 279 - 350 - 148 - 157 - 432 - 211 - 596 - 2 216 - 8 422 - 27 044 - 112	- 34 - 27 + 28 - 28 - 30 - 17 - 47 - 31 - 36 - 16 - 19 - 35 - 31 - 31 - 31
05 111 000 05 112 000 05 112 000 05 112 000 05 114 000 05 114 000 05 114 000 05 114 000 05 114 000 05 117 000 05 11	Düsseldorf Duisburg Essen Krefeld Mönchengladbach Müheim an der Ruhr Oberhausen Remscheid Solingen Wuppertal Kreise Klewe Mettmann Rhein-Kreis Neuss Viersen Wesel LegBez. Düsseldorf Kreisfreis Städte Aachen Bonn Köh Leverkusen Leverkusen Leverkusen Leverkusen Leverkusen Cherhein-Kreis Euskirchen Heinsberg Oberbergischer Kreis	1 535 996 998 998 1 156 998 998 999 1 156 998 999 999 999 999 999 999 999 999 99	\$5,5 24,5,5 19,8 19,8 19,8 19,8 15,0	1 244 858 905 1 102 665 339 1 347 1 233 2 033 2 033 30 206 4 349 2 912 5 374 24 033 777 444 4 317 738 635	33.2 (24.9 18.8 18.8 14.8 12.6 (6.4 14.1 14.8 14.8 14.1 14.8 14.1 14.8 14.1 14.1	966 721 564 741 6133 255 1 078 917 1 742 25 383 3 669 2 111 4 846 20 402 64 775 3 828 3 322 462	29,4 22,4 13,4, 10,9 33,5,5 38,8 67,1 55,6 63,2 23,8 6,7 16,1,1 37,2 27,1	1 170 942 488 698 704 206 973 788 1 820 23 724 3 635 2 167 4 317 1 8 949 61 444	35.4 28.3 14.0 10.9 41.7. 37.4 68.8 56.0 66.6 32.1 26.5 7.4 15.2 36.7 27.3	1 116 1177 1177 806 86855 1172 949 949 1 705 3 690 2 467 3 979 18 164 58 594 483 7711	36,9 37,1 19,3 13,2 45,5 37,0 69,2 55,1 63,3 29,4 8,5 14,4 36,4	- 419 + 261 - 279 - 350 - 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 21 + 26 - 22 - 30 - 11 - 44 - 31 - 22 - 23 - 36 - 16 - 15 - 39 - 31 - 31 - 31 - 31 - 31 - 31 - 31 - 31
05 112 000 05 113 000 05 114 000 105 114 000 105 116 000 105 117 000 105 117 000 105 117 000 105 117 000 105 117 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 120 000 105 180 000 105 180 000 105 180 000 105 170 000 105 170 000 105 314 000 105 315 000 105 316 0	Duisburg Essen Kreleld Mönchengladbach Münlem an der Ruhr Oberhausen Remscheid Solingen Wuppertal Ireise Kleve Mettmann Rhein-Kreis Neuss Viersen Wesel Leg-Bez. Düsseldorf reisfreie Städte Aachen Bonn Köh Leverkusen Ireise Essen Viersen Viersen Viersen Viersen Viersen Viersen Viersen Donn Köh Leverkusen Ireise Essen Leverkusen Ireise Leskrichen Heinsberg Oberbergscher Kreis Verleis Rheinisch-Bergischer Kreis	1 535 996 998 998 1 156 998 998 999 1 156 998 999 999 999 999 999 999 999 999 99	\$5,5 24,5,5 19,8 19,8 19,8 19,8 15,0	858 858 9050 1102 665 665 665 665 665 665 665 665 665 66	33.2 (24.9 18.8 18.8 14.8 12.6 (6.4 14.1 14.8 14.8 14.1 14.8 14.1 14.8 14.1 14.1	966 721 564 741 6133 255 1 078 917 1 742 25 383 3 669 2 111 4 846 20 402 64 775 3 828 3 322 462	29,4 22,4 13,4, 10,9 33,5,5 38,8 67,1 55,6 63,2 23,8 6,7 16,1,1 37,2 27,1	1 170 942 488 698 704 206 973 788 1 820 23 724 3 635 2 167 4 317 1 8 949 61 444	35.4 28.3 14.0 10.9 41.7. 37.4 68.8 56.0 66.6 32.1 26.5 7.4 15.2 36.7 27.3	1 116 1177 1177 806 86855 1172 949 949 1 705 3 690 2 467 3 979 18 164 58 594 483 7711	36,9 37,1 19,3 13,2 45,5 37,0 69,2 55,1 63,3 29,4 4,4 36,4 26,8	- 419 + 261 - 279 - 350 - 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 21 + 26 - 22 - 30 - 11 - 44 - 31 - 22 - 23 - 36 - 16 - 15 - 39 - 31 - 31 - 31 - 31 - 31 - 31 - 31 - 31
05 114 000 05 116 000 05 116 000 05 116 000 05 117 000 05 117 000 05 117 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 180 000 05 170 000 000 05 170 000 000 05 170 000 05 314 000 0 05 315 000 00 05 315 000 00 00 05 315 000 00 00 00 05 315 000 00 00 00 05 315 000 00 00 00 00 00 00 00 00 00 00 00 0	Krefeld Monchengladbach Mülheim an der Ruhr Oberhausen Remscheid Solingen Wuppertal reise Kleve Mettmann Rhein-Kreis Neuss Viersen Wesel Leg-Bez. Düsseldorf reisfreie Städte Aachen Bonn Klön Leverkusen Ireise Städte Aachen Städteregion Aachen Düren Rhein-Kreis Neuss Viersen Unter Städte Aachen Städte Aachen Städte Städte Aechen Bonn Klön Leverkusen Ireise Etalien Städteregion Aachen Städteregion Aechen Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinische Bergischer Kreis Rheinische Bergischer Kreis Rheinischer Bergischer Kreis	996 833 329 329 329 329 329 329 329 32 329 32 32 32 32 32 32 32 32 32 32 32 32 32	19.8 15.0.0 37.5 36.3 36.3 36.0 58.9 40.0 25.1 18.7 43.2 27.7 67.7 22.0 7.6 31.4	905 905 905 905 905 905 905 905 905 905	18,8 14,8 22,6,6 41,1 66,3 59,9 59,9 37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 67,1 7.8,8	564 741 613 255 10788 917 1742 25383 3 669 2 111 4 846 2 0 402 64 775 3 828	13,4 10,9 33,5 38,8 67,1,1 55,6 63,2 23,8 6,7 16,1,1 37,2 27,1	488 698 704 4 206 698 1 820 23 724 3 635 2 167 18 949 61 444 3 999 598 527 7	14,0 10,9 41,7 37,4 68,8 56,0 66,6 32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1	717 806 6855 172 949 748 1 705 2 1 359 3 690 2 467 3 979 18 164 58 594	19,3 13,2 45,5 37,0 69,2 55,1 63,3 29,4 29,4 36,4 26,8	- 279 - 350 - 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 28 - 30 - 17 - 44 - 31 - 22 - 23 - 36 - 16 - 15 - 33 - 31 - 31
05 116 000 05 117 000 05 117 000 05 117 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 160 000 05 160 000 05 160 000 05 17	Mönchengladbach Mühleim an der Ruhr Oberhausen Remschield Solingen Wuppertal reise Kleve Mettmann Rhein-Kreis Neuss Viersen Wesel legBez. Düsseldorf reisferies Städte Aachen Bonn Köh Leverkusen Leverkusen Uiersen	1 156 833 329 2 214 337 337 33 4 421 3 053 6 195 85 638 85 638 688 688 688 688 688 688 688 688 688	15,0 37,5,5 36,3 64,6 66,0 58,9 40,0 25,1 8,5 18,7,7 43,2 7,6 31,4	1 102 6 685 339 1 347 1 233 2 033 2 033 30 206 4 349 2 912 2 4 033 77 444 4 317 421 738 635	14,8 32,6 41,1,1 66,3 59,9 37,4 24,5 8,4,4 17,0 40,7 30,0 67,1 23,6 7,8,8	741 613 255 1 078 917 1 742 25 383 3 669 2 1111 4 846 20 402 64 775 3 828 3 828 4 826 4 82	10,9 33,5 38,8 67,1 55,6 63,2 33,0 23,8 6,7,1 16,1 37,2 27,1 64,9 25,0 5,5,5	698 7704 2066 973 788 1 820 23 724 3 635 2 167, 4 317 18 949 61 444 3 999 588 587	10,9 41,7 37,4 68,8 56,0 66,6 32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	806 685 1727 949 748 1 705 21 359 3 690 2 467 3 979 18 164 58 594	13,2 45,5 37,0 69,2 55,1 63,3 29,4 29,4 36,4 26,8 40,1 9,5	- 350 - 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 300 - 17 - 447 - 31 - 22 - 23 - 36 - 16 - 19 - 35 - 31 - 31
05 117 000 05 119 000 05 119 000 05 119 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 120 000 05 150 000 05 160 000 05 160 000 05 17	Müheim an der Ruhr Oberhausen Remscheid Solingen Wuppertal reise Kleve Mettmann Mettmann Rhein-Kreis Neuss Viersen Wesel leg-Bez. Düsseldorf Leverkusen Bonn Köh Leverkusen Ireise Aachen, Städteregion Aachen Düren Rhein-Erft-Kreis Euskinchen Heinsberg Oberbergischer Kreis	833 329 1 1 381 959 2 214 3 3733 4 421 3 063 6 195 26 586 85 638 4 670 465 883 688 688 689 10 726 8 304 1 671 1 726 8 304 1 671 1 726	37,5 35,3 35,3 35,3 35,3 56,0 58,9 40,0 25,1 8,5 18,7 43,2 31,7 67,7,2 22,0 7,6 31,4 43,2	665 339 1 347 1 233 2 033 2 033 2 036 4 349 2 912 5 374 24 033 77 444 4 317 421 738 635	32,6 41,1 66,3,3 59,9 59,9 37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	613 255 1 0788 917 1 742 25 383 3 669 2 1111 4 846 20 402 64 775 3 828 3 828 4 822 4 622	33,5 38,8 67,1 55,6 63,2 33,0 7,1 61,1 37,2 27,1 64,9 25,0 5,5,5	704 206 973 788 1 820 23 724 3 635 2 167 4 317 18 949 61 444	41,7 37,4 68,8 56,0 66,6 32,1 26,5 7,4 15,2 36,7 27,3	685 172 949 748 1 705 21 359 3 690 2 467 3 979 18 164 58 594	45,5 37,0 69,2 55,1 63,3 29,4 29,4 4,1 36,4 26,8	- 148 - 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 177 - 47 - 31 - 22 - 23 - 36 - 16 - 19 - 35 - 31 - 31
05 119 000 05 120 000 105 120 000 105 120 000 105 120 000 105 122 000 105 122 000 105 122 000 105 120 000 105 162 000 105 162 000 105 170 000 105 170 000 105 315 000 105	Oberhausen Remscheid Solingen Wuppertal retise Klieve Mettman Rhein-Kreis Neuss Viersen Wesel LegBez. Düsseldorf Ireisferies Städte Aachen Bonn Köh Leverkusen Jünnen Rhein-Erit-Kreis Euskinchen Heinsberg Oberbergischer Kreis	329 1 381 959 2 214 33 733 4 427 3 053 6 195 2 586 85 638 4 670 4 670 4 655 8 833 6 88 8 831 6 88	35,3 64,6 56,0 58,9 40,0 25,1 8,5 18,7 43,2 31,7 67,7 22,0 7,6 31,4	339 1 347 1 233 2 033 30 206 4 349 2 912 5 374 24 033 77 444 4 317 421 738 635	41,1 66,3 59,9 59,9 37,4 24,5 8,4 17,0,7 30,0 67,1 23,6 6,7,8	255 1 078 9171 1 742 25 383 3 689 2 1111 4 846 20 402 64 775 3 828 462 462 462	38,8 67,1 55,6 63,2 33,0 23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5,5	206 973 788 1 820 23 724 3 635 2 167 4 317 18 949 61 444 3 999 588 527	37.4 68.8 56.0 66.6 32.1 26.5 7.4 15.2 36.7 27.3	172 949 748 1 705 21 359 3 690 2 467 3 979 18 164 58 594	37.0 69.2 55.1 63.3 29.4 29.4 8.5 14.4 36.4 26.8	- 157 - 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 47 - 31 - 22 - 23 - 36 - 16 - 19 - 35 - 31 - 31
05 120 000 05 122 000 05 12	Remscheid Solinigen Wuppertal Ireise Kieve Mettmann Mettmann Rhein-Kreis Neuss Viersen Wesel log-Bez-Düsseldorf Ireisferie Städte Aachen Bonn Köh Leverkusen Ireise Aachen, Städteregion Aachen Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis	1 381 959 2 214 3 3733 4 421 3 963 6 195 26 586 85 638 4 670 465 883 688	64.6 56.0 58.9 40.0 25.1 8.5 18.7 43.2 31.7 67.7 22.0 7.6 31.4 14.5 24.4 14.5 14.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	1 347 1 233 2 033 30 206 4 349 2 912 5 374 24 033 77 444 4 317 421 738 635	66,3 59,9 59,9 37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	1 078 917 1 742 25 383 3 669 2 111 4 846 20 402 64 775 3 828 322 462	67,1 55,6 63,2 33,0 23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	973 788 1 820 23 724 3 635 2 167 4 317 18 949 61 444 3 999 588 527	68,8 56,0 66,6 32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	949 748 1 776 21 359 3 690 2 467 3 979 18 164 58 594	69.2 55.1 63.3 29.4 29.4 8.5 14.4 36.4 26.8	- 432 - 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 31 - 22 - 23 - 36 - 16 - 19 - 35 - 31 - 31
05 122 000 0 05 124 000 0 05 124 000 0 05 124 000 0 0 05 124 000 0 05 124 000 0 05 124 000 0 05 124 000 0 05 124 000 0 05 170 000 0 0 05 170 000 0 0 05 170 000 0 0 05 170 000 0 0 05 170 000 0 0 05 170 000 0 0 05 170 000 0 0 0 000 0 000 0 000 0 000 0 000 0	Solingen Wuppertal riese Kieve Mettmann Rhein-Kreis Neuss Viersen Wesel LegBez. Düsseldorf riesifneie Städte Aachen Bonn Köh Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Ertl-Kreis Euskirchen Heinsberg Oberbergscher Kreis	959 2 214 33 733 4 421 3 053 6 195 2 586 8 538 8 538 8 10 726 8 831 6 88	56.0 58.9 40.0 25.1 8.5 18.7, 43.2 31,7 67,7 22.0 7.6 31.4	1 233 2 033 30 206 4 349 2 912 5 374 2 4 033 77 444 4 317 421 738 635	59,9 59,9 37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	917 1 742 25 383 3 669 2 111 4 846 20 402 64 775 3 828 322 462	55,6 63,2 33,0 23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	788 1 820 23 724 3 635 2 167 4 317 18 949 61 444 3 999 588 527	56,0 66,6 32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	748 1 705 21 359 3 690 2 467 3 979 18 164 58 594	55,1 63,3 29,4 29,4 8,5 14,4 36,4 26,8	- 211 - 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 22 - 23 - 36 - 16 - 19 - 35 - 31 - 31 - 44 - 12
05 124 000 Kr. 05 154 000 Kr. 05 158 000 US 162 000 US 162 000 US 162 000 US 163	Wuppetal rieise Kikee Mettmann Rhein-Kreis Neuss Viersen Wesel legBez. Düsseldorf rreisfreie Städte Aachen Bonn Köh Leverkusen rreise Aachen Düren Rhein-Erft-Kreis Euskirchen Heimsberg Oberbergischer Kreis	2 214 33 733 4 421 3 063 6 195 26 586 85 638 4 670 465 883 688 10 726 8 304 1 671 2 4078	58,9 40,0 25,1 8,5 18,7 43,2 31,7 67,7,2 22,0 7,6,6 31,4	2 033 30 206 4 349 2 912 5 374 24 033 77 444 4 317 421 7388 635	59,9 37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	25 383 3 669 2 111 4 846 20 402 64 775 3 828 322 462	63,2 33,0 23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	1 820 23 724 3 635 2 167 18 949 61 444 3 999 588 527	66,6 32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	1 705 21 359 3 690 2 467 3 979 18 164 58 594	63,3 29,4 29,4 8.5 14,4 36,4 26,8	- 509 - 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044	- 23 - 36 - 16 - 19 - 35 - 31 - 31
Kr Kr Kr Kr Kr Kr Kr Kr	ireise Kieve Mettmann Rhein-Kreis Neuss Viersen Wesel Leg-Bez. Düsseldorf reisfreie Städte Aachen Bonn Kön Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Erlt-Kreis Euskirchen Heinsberg Oberbergscher Kreis	33 733 4 421 3 063 6 195 26 586 85 638 4 670 4 650 88 883 688 1 1 072 8 304 1 671 2 4073	40,0 25,1 8,5 18,7 43,2 31,7 67,7 22,0 7,6,6 31,4	30 206 4 349 2 912 5 374 24 033 77 444 4 317 421 7388 635	37,4 24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	25 383 3 669 2 111 4 846 20 402 64 775 3 828 322 462	33,0 23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	23 724 3 635 2 167 4 317 18 949 61 444 3 999 588 527	32,1 26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	21 359 3 690 2 467 3 979 18 164 58 594	29,4 29,4 8.5 14,4 36,4 26,8 40,1 9,5	- 12 374 - 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 36 - 16 - 19 - 35 - 31 - 31 + 4 - 12
05 154 000 05 158 000 05 158 000 00 05 158 000 00 05 162 000 0 05 170 000 0 05 170 000 0 05 315 000	Kleve Mettmann Rhein-Kreis Neuss Viersen Wesel legBez_ Düsseldorf treisfreie Städte Aachen Bonn Köh Leverkusen reisfreie Städteregion Aachen Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis	4 421 3 063 6 195 26 586 85 638 4 670 465 883 688 10 726 8 304 1 671 2 4 078	25,1 8,5 18,7 43,2 31,7 67,7 22,0 7,6 31,4	4 349 2 912 5 374 24 033 77 444 4 317 421 738 635	24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	3 669 2 111 4 846 20 402 64 775 3 828 322 462	23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	3 635 2 167 4 317 18 949 61 444 3 999 588 527	26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	3 690 2 467 3 979 18 164 58 594	29,4 8,5 14,4 36,4 26,8 40,1 9,5	- 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 16 - 19 - 35 - 31 - 31 + 4 - 12
05 182 000 05 182 000 05 182 000 05 182 000 05 182 000 05 182 000 185 186 000	Mettmann Rheim-Kreis Neuss Viersen Wesel legBez. Düsseldorf reisfreis Städte Aachen Bonn Köln Leverkusen reisse Aachen, Städteregion Aachen Düren Rheim-Erti-Kreis Euskirchen Heimsberg Oberbergischer Kreis	4 421 3 063 6 195 26 586 85 638 4 670 465 883 688 10 726 8 304 1 671 2 4 078	25,1 8,5 18,7 43,2 31,7 67,7 22,0 7,6 31,4	4 349 2 912 5 374 24 033 77 444 4 317 421 738 635	24,5 8,4 17,0 40,7 30,0 67,1 23,6 7,8	3 669 2 111 4 846 20 402 64 775 3 828 322 462	23,8 6,7 16,1 37,2 27,1 64,9 25,0 5,5	3 635 2 167 4 317 18 949 61 444 3 999 588 527	26,5 7,4 15,2 36,7 27,3 67,1 46,1 7,1	3 690 2 467 3 979 18 164 58 594	29,4 8,5 14,4 36,4 26,8 40,1 9,5	- 731 - 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 16 - 19 - 35 - 31 - 31 + 4 - 12
05 162 000 NO 5 160 000 NO 5 160 000 NO 5 160 000 NO 5 170 000 Re NO 5 314 000 NO 5 314 000 NO 5 316 000 NO 5 362 000 NO 5 362 000 NO 5 362 000 NO 5 374 000 NO 5 378 000 NO 5 378 000 NO 5 378 000 NO 5 378 000 NO S	Viersen Wesel Leg-Bez, Düsseldorf Ireisfreie Städte Aachen Bonn Köh Leverkusen Ireise Aachen, Städteregion Aachen Düren Rhein-Erit-Kreis Euskirchen Heinsberg Oberbergischer Kreis	3 063 6 195 26 586 85 638 4 670 465 883 688 10 726 8 304 1 671 24 078	8,5 18,7 43,2 31,7 67,7 22,0 7,6 31,4	2 912 5 374 24 033 77 444 4 317 421 738 635	8,4 17,0 40,7 30,0 67,1 23,6 7,8	2 111 4 846 20 402 64 775 3 828 322 462	6,7 16,1 37,2 27,1 64,9 25,0 5,5	2 167 4 317 18 949 61 444 3 999 588 527	7,4 15,2 36,7 27,3 67,1 46,1 7,1	2 467 3 979 18 164 58 594	8,5 14,4 36,4 26,8 40,1 9,5	- 596 - 2 216 - 8 422 - 27 044 - 18 - 112	- 19 - 35 - 31 - 31 + 4 - 12
05 170 000 Re 170 000	Wesel tegBez. Düsseldorf reisfreie Städte Aachen Bonn Köln Leverkusen reisie Aachen, Städteregion Aachen Düren Rhein-Erlt-Kreis Euskirchen Heinsberg Oberbergischer Kreis	26 586 85 638 4 670 465 883 688 10 726 8 304 1 671 24 078	43,2 31,7 67,7 22,0 7,6 31,4	24 033 77 444 4 317 421 738 635	40,7 30,0 67,1 23,6 7,8	20 402 64 775 3 828 322 462	37,2 27,1 64,9 25,0 5,5	18 949 61 444 3 999 588 527	36,7 27,3 67,1 46,1 7,1	18 164 58 594	36,4 26,8 - 40,1 9,5	- 8 422 - 27 044 + 18 - 112	- 31 - 31 + 4 - 12
05 100 000 Re Kn 05 313 000 J 05 314 000 J 05 315 000 J 05 315 000 J 05 316 000 J 05 316 000 J 05 380 000 J 05 382 000 J 05 370 000 J 05 370 000 J 05 382 000 J 05 382 000 J 05 382 000 J	legBez. Düsseldorf ireisfreie Städte Aachen Bonn Köh Leverkusen ireise Aachen, Städteregion Aachen Düren Rhein-Erlt-Kreis Euskirchen Heinsberg Oberbergischer Kreis	85 638 4 670 465 883 688 10 726 8 304 1 671 24 078	31,7 67,7 22,0 7,6 31,4	4 317 421 738 635	30,0 67,1 23,6 7,8	64 775 3 828 322 462	27,1 64,9 25,0 5,5	3 999 588 527	27,3 67,1 46,1 7,1	58 594	26,8 40,1 9,5	- 27 044 + 18 - 112	- 31 + 4 - 12
Kn 05 313 000 Kn 05 314 000 I 05 315 000 I 05 316 000 I 05 317 000 I 05 317 000 I 05 317 000 I 05 318 000 I 05 317 000 I 05 318 000 I 0	reisfreie Städte Aachen Born Kön Leverkusen reise Aachen, Städteregion Aachen, Städteregion Brein-Ert-Kreis Euskirchen Heinsberg Oberbergscher Kreis	4 670 465 883 688 10 726 8 304 1 671 24 078	67,7 22,0 7,6 31,4	4 317 421 738 635	67,1 23,6 7,8	3 828 322 462	64,9 25,0 5,5	3 999 588 527	67,1 46,1 7,1	483 771	40,1 9,5	+ 18 - 112	+ 4 - 12
05 313 000 05 314 000 105 314 000 105 315 000 105 316 000 105 316 000 105 316 000 105 316 000 105 316 000 105 316 000 105 316 000 105 316 000 105 317	Aachen Bonn Köln Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Ert-Kreis Euskirchen Heinsberg Oberbergscher Kreis Rheinisch-Bergischer Kreis	465 883 688 10 726 8 304 1 671 24 078	22,0 7,6 31,4	421 738 635	23,6 7,8	322 462	25,0 5,5	588 527	46,1 7,1	771	9,5	- 112	- 12
05 314 000 105 315 000 1	Bonn Köh Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Erl-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheilisch-Bergischer Kreis	465 883 688 10 726 8 304 1 671 24 078	22,0 7,6 31,4	421 738 635	23,6 7,8	322 462	25,0 5,5	588 527	46,1 7,1	771	9,5	- 112	- 12
05 315 000 1	Köin Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Ert-Kreis Euskirchen Heinsberg Oberbergscher Kreis Rheinisch-Bergischer Kreis	883 688	7,6 31,4	738 635	7,8	462	5,5	527	7,1	771	9,5	- 112	- 12,
05 316 000 Kn 05 334 000 7 05 354 000 7 05 358 000 1 05 362 000 1 05 370 000 1 05 378 000 1 05 378 000 1 05 378 000 1	Leverkusen reise Aachen, Städteregion Aachen Düren Rhein-Eft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	10 726 8 304 1 671 24 078	31,4 52,4 14,5	635									
05 334 000 // 05 354 000 // 05 358 000 1 05 362 000 1 05 370 000 1 05 378 000 1 05 378 000 1 05 378 000 1	Aachen, Städteregion Aachen Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	8 304 1 671 24 078	14,5	40.440				569			,-	+ 300	. 10
05 354 000 / 05 358 000 1 05 362 000 1 05 366 000 1 05 374 000 05 378 000 1 05 378 000 1 05 378 000 1 05 382 000 1 05 300 000 Re	Aachen Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	8 304 1 671 24 078	14,5	40.440									
05 358 000 1 05 362 000 1 05 366 000 1 05 370 000 1 05 374 000 0 05 378 000 1 05 382 000 1	Düren Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	8 304 1 671 24 078	14,5	40.440						13 361	56,1		
05 362 000 1 05 366 000 1 05 370 000 1 05 374 000 0 05 378 000 1 05 382 000 Re	Rhein-Erft-Kreis Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	1 671 24 078			52,8	9 722	54,3	9 195	53,7				
05 366 000 1 05 370 000 1 05 374 000 0 05 378 000 1 05 382 000 1	Euskirchen Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis	24 078	4.0	7 679	13,9	6 356	12,4	6 239	12,1	6 100	12,2	- 2 204	- 26
05 370 000 II 05 374 000 0 05 378 000 II 05 382 000 II 05 300 000 Re	Heinsberg Oberbergischer Kreis Rheinisch-Bergischer Kreis		4,3	1 362	3,6	748	2,1	1 063	3,1	1 269	3,9	- 402	- 24
05 374 000 0 05 378 000 1 05 382 000 1 05 300 000 Re	Oberbergischer Kreis Rheinisch-Bergischer Kreis	/ 825	41,1 18.1	23 377 7 026	42,5 17.1	22 376 6 223	44,4 15.7	22 841 4 970	46,7 12.8	24 622 3 887	49,5 10,4	+ 544 - 3 938	+ 2
05 378 000 I 05 382 000 I 05 300 000 Re	Rheinisch-Bergischer Kreis												
05 382 000 Re		31 876 11 320	84,8 75,1	30 060 11 161	86,5 77,2	28 586 10 726	91,3 81,2	27 671 10 063	92,3 82,4	26 834 9 928	90,9 82,2	- 5 042 - 1 392	- 15 - 12
		22 390	43,5	21 355	44,1	19 751	43,4	19 800	46,7	20 919	48,0	- 1 471	- 6
	legBez. Köln	124 895	36,2	118 577	36,4	109 664	36,3	107 524	36,9	109 161	37,6	- 15 734	- 12,
	reisfreie Städte												
	Bottrop	1 808	39,3	1 049	31,3	869	27,9	796	26,5	874	27,7	- 934	- 51
	Gelsenkirchen	474	25,5	502	30,5	301	28.9	316	33,1	297	33.2	- 177	- 37,
	Münster	5 348	33,2	4 068	25,9	2 908	19,6	2 604	18,5	2 115	16,0	- 3 233	- 60,
Kr	reise												
05 554 000 B	Borken	48 008	48,0	41 627	42,8	28 288	29,9	21 818	24,3	14 319	16,3	- 33 689	- 70,
05 558 000	Coesfeld	27 722	35,8	21 334	28,4	13 017	17,8	10 168	14,2	7 129	10,3	- 20 593	- 74,
	Recklinghausen	8 874	29,8	8 057	27,4	6 009	21,9	5 736	22,1	5 178	20,5	- 3 696	- 41
	Steinfurt	57 655	47,5	47 361	40,0	27 079	24,0	21 530	20,1	16 311	16,2	- 41 344	- 71
05 570 000	Warendorf	34 260	35,4	26 021	27,5	16 347	17,7	13 210	14,8	9 812	11,5	- 24 448	- 71
05 500 000 Re	egBez. Münster	184 150	41,1	150 019	34,5	94 818	22,6	76 178	19,0	56 034	14,5	- 128 116	- 69,
	reisfreie Stadt												
05 711 000 I	Bielefeld	2 515	25,5	2 079	22,8	1 775	21,4	1 555	21,2	1 441	21,5	- 1 074	- 42
	reise	00.405		04044	00.7	40.040		45.044	07.0	44.755	00.0	40.000	
	Gütersloh	28 135	44,0	24 844	39,7	18 819	31,4	15 641	27,8	11 755	22,6	- 16 380	- 58
	Herford	5 359	19,3	4 468	16,8	3 215	13,0	2 632	11,9	2 364	11,8	- 2 995	- 55
	Höxter	22 624	31,7 24,2	19 879	28,6	15 680	23,1	13 780	20,9	13 602	20,7	- 9 022	- 39
	Lippe Minden-Lübbecke	15 098 29 892	38,1	13 066 24 429	21,5 32,2	9 990 17 205	17,4 23,7	8 966 13 105	16,1 19,3	8 926 10 959	16,7 17,1	- 6 172 - 18 933	- 40 - 63
	Paderborn	25 654	36,4	22 744	33,1	16 916	26,0	14 604	23,4	15 537	25,6	- 10 117	- 39
υο /UU 000 Re	legBez. Detmold	129 277	33,6	111 509	29,9	83 600	23,5	70 282	20,8	64 583	20,0	- 64 694	- 50
	reisfreie Städte	40.4	40.0	400	45.0	240	44.0	240	40.0	000	20.0		
	Bochum	434	13,8	436	15,0 16.2	340 816	14,9	349 853	16,6	393	20,6	- 41 - 529	- 9
	Dortmund	1 364 1 524	17,6 49,9	1 153 1 335	16,2 50,6	816 1 121	13,4 52.6	853 1 075	15,2 58.7	835 1 105	17,1 63.4	- 529 - 419	- 38 - 27
	Hagen Hamm	4 296	49,9 32,2	3 583	28,6	2 722	22,9	2 350	20,8	2 005	18,2	- 2 291	- 53
	Herne	98	14,9	95	14,9	73	14,1	62	12,5	99	18,7	+ 1	+ 0
Kr	reise												
	Ennepe-Ruhr-Kreis	8 999	57,3		57,5	7 914	60,7	7 792	64,7	7 248	62,8	- 1 751	- 19
	Hochsauerlandkreis	33 521	53,4	33 955	56,6	36 652	65,1	35 621	67,3	34 895	63,1	+ 1 374	+ 4
	Märkischer Kreis	20 205	62,0	18 811	61,5	18 239	63,6	17 310	66,0	17 116	65,6	- 3 089	- 15
	Olpe	12 726	68,4	12 493	72,4	13 487	82,3	12 978	85,7	12 263	85,0	- 463	- 3
	Siegen-Wittgenstein Soest	11 574 20 970	62,3 25.0	12 291 17 598	69,8 21.4	13 638 13 080	84,8 16.5	14 237 11 913	90,5 15.6	15 916 12 002	94,5 16.0	+ 4 342 - 8 968	+ 37
	Unna	8 439	25,0 27,0	17 598 7 284	21,4	13 080 4 866	16,5	11 913 4 490	17,1	12 002 4 544	17,3	- 8 968	- 42 - 46
05 900 000 Re	egBez. Arnsberg	124 149	44,4	117 422	42,2	112 949	43,3	109 030	44,3	108 419	44,2	- 20 858	- 12
	lordrhein-Westfalen	648 108	37,3	574 971	34,4	465 807	29,5	424 458	28,3	396 792	27,1	- 251 316	- 38
												- 231 310	- 38
	werden regional nach dem Betriel landwirtschaftlichen Betrieben mi						une nachgewies	en, in der diese	r Betrieb seiner	n Hauptsitz hat.	-		
deren natürliche	ne Erzeugungseinheiten dem durch						lich						
2) Flächen von I	he entspachen – ı landwirtschaftlichen Betrieben mi												
deren natürliche	ne Erzeugungseinheiten dem durch he entspachen –						lich						
	ne entspacnen – ı landwirtschaftlichen Betrieben mi	it mindestens 5 He	ektar landwirtse	haftlich nenutzt	er Fläche sowie	von Betriehen							

Tabelle B13: (zu Frage 10) Gesamtstickstoff: Anfall, Import, Export und Verbleib in NRW (Angaben in kg N)

	Anfall in der	Import	Biogasanla-	Klär-	Netto-Export	Verbleib in
Kreis	Tierhaltung	(NL + andere BL)	gen (pflanzl. Anteil)	schlamm	(aus d. Krei- sen)	NRW ¹⁰
111 Düsseldorf	103.348	19.837	36.656	0	-42.284	202.126
112 Duisburg	85.412	36.489	30.030	0	-141.114	263.014
113 Essen	125.762	36.469	55.717	5.618	27.520	159.577
114 Krefeld	194.071	24.760	21.994	0.010	-72.852	313.677
116 Mönchengladbach	221.989	396.977	21.994	34.391	-108.759	762.116
117 Mülheim	64.155	62.470		2.554	53.895	75.284
119 Oberhausen	27.480	02.470		2.554	-17.674	45.154
120 Remscheid		0		0	ļ	134.216
	192.024		20.050		57.808	
122 Solingen	85.790	173	36.656	1.733	9.333	115.020
124 Wuppertal	210.683	1.472	4 005 005	9.705	-11.632	233.492
154 Kleve	11.185.913	1.957.799	1.265.225	15.672	659.356	13.765.253
158 Mettmann	447.262	70.758	62.315	47.793	-22.855	650.983
162 Rhein-Kreis Neuss	564.309	824.587	211.579	62.637	-51.867	1.714.979
166 Viersen	2.763.946	1.377.644	406.297	75	831.889	3.716.072
170 Wesel	5.627.173	675.589	204.102	7.069	-581.634	7.095.567
RegBez. Düsseldorf	21.899.316	5.448.555	2.300.542	187.247	589.132	29.246.528
314 Bonn	36.100	0	0	4.555	2.754	37.901
315 Köln	62.011	157.662	124.558	443	-10.856	355.530
316 Leverkusen	95.394	9.695	0	0	1.784	103.305
334 Aachen	2.002.389	361.730	155.422	15.904	14.464	2.520.982
358 Düren	1.099.655	1.078.057	838.327	180.505	-317.331	3.513.875
362 Rhein-Erft-Kreis	381.143	1.081.285	21.994	83.274	38.450	1.529.246
366 Euskirchen	2.637.919	1.098.298	497.058	229.616	-170.118	4.633.009
370 Heinsberg	2.451.397	2.215.523	287.278	98.983	-61.847	5.115.028
374 Oberbergischer Kreis	3.506.595	3.239	0	0	2.510	3.507.324
378 Rheinisch-Berg. Kreis	1.347.187	10.741	73.312	0	-17.471	1.448.711
382 Rhein-Sieg-Kreis	2.694.526	156.972	144.865	13.478	-96.965	3.106.807
RegBez. Köln	16.314.316	6.173.202	2.142.813	626.759	-614.627	25.871.717
512 Bottrop	508.294	3.173	36.656	0	82.739	465.384
513 Gelsenkirchen	115.099	0	0	0	7.292	107.807
515 Münster	1.274.736	0	208.012	3.472	-16.701	1.502.920
554 Borken	17.286.170	9.895	2.405.153	0	2.480.660	17.220.558
558 Coesfeld	10.973.971	26.383	1.002.620	13.908	837.924	11.178.957
562 Recklinghausen	3.001.643	12.129	161.434	6.674	92.751	3.089.128
566 Steinfurt	13.273.695	121.171	1.553.122	18.265	923.687	14.042.566
570 Warendorf	10.712.807	51.463	887.435	234	214.204	11.437.736
RegBez. Münster	57.146.414	224.214	6.254.432	42.552	4.622.558	59.045.055
711 Bielefeld	340.251	68.244	193.545	3.780	-55.138	660.957
754 Gütersloh	5.803.949	29.350	767.507	6.496	317.466	6.289.836
758 Herford	1.102.982	334.530	440.314	64.216	-42.384	1.984.426
762 Höxter	4.114.866	95.532	1.279.887	202.965	-72.101	5.765.351
766 Lippe	2.070.853	216.631	982.312	210.181	-119.794	3.599.772
770 Minden-Lübbecke	4.880.287	544.983	1.355.619	12.672	184.628	6.608.934
774 Paderborn	5.567.505	41.487	1.211.556	51.277	135.494	6.736.331
RegBez. Detmold	23.880.693	1.330.757	6.230.739	551.588	348.171	31.645.607
911 Bochum	58.228	1.330.737	0.230.739	755	-36.433	95.416
913 Dortmund	•		}			
	162.047	22.176	0	4.554	-289.740	478.517
914 Hagen	122.482	11.629	0	0	0 00 007	134.111
915 Hamm	921.818	0	97.212	36.488	-86.337	1.141.855
916 Herne	37.257	0	0	0	-5.236	42.493
954 Ennepe-Ruhr-Kreis	894.907	37.859	62.682	3.981	23.045	976.383
958 Hochsauerlandkreis	4.950.102	97.338	384.670	1.663	-1.876	5.435.649
962 Märkischer Kreis	2.370.871	106.754	167.445	0	-149.988	2.795.058
966 Olpe	1.340.849	20.091	36.656	0	-39.153	1.436.750

_

Verbleib in NRW = Anfall in der Tierhaltung **plus** Import (NL + andere BL) **plus** Biogasanlagen (pflanzlicher Anteil) **plus** Klärschlamm **minus** Netto-Export (aus den Kreisen)

970 Siegen-Wittgenstein	1.159.478	0	1.100	0	2.996	1.157.581
974 Soest	5.510.110	445.619	1.383.771	130.180	-545.918	8.015.598
978 Unna	2.023.918	20.669	246.737	52.555	-214.488	2.558.367
RegBez. Arnsberg	19.552.066	762.135	2.380.273	230.176	-1.343.129	24.267.779
NRW	138.792.805	13.938.864	19.308.799	1.638.322	3.602.105	170.076.686

Tabelle B14: (zu Frage 57) Statistische Kennzahlen zu Pflanzenschutzmitteln im Grundwasser

<u>/Ü-NRW:</u>	Pflanzensch	nutzmittel im	Grundwasser									
		ersuchunasera	ebnis pro Parame	eter und	Messst	elle im	Zeitra	um 200	9-201	2		
	-		STOCKWERK =			0.10 1111	Loura	200	0 20.	_		
	Oberei Oruna	wassenener (JIOOKWEKK -	1)								
	DB-Stand: 20.01	1 2014										
	DB-Stariu. 20.0	1.2014										
					Tabelle	zuletzt ü	berarbe	itet am:	13.02	.2014		
				_		7						
				Arzahl der untersuchten MS Tn insgesamt	MSTn	Anzahl der MSTn > BG bis ≤ 0.05 µg/l	Arzahl der MSTn > 0.05 bis ≤ 0.1 µg/l	Anzahlder MSTn >0.1 bis≤1.0 µg/L	Anzahlder MSTn >1.0 bis≤3.0 µg/L	Arzahl der MSTn > 3.0 bis ≤ 10.0 µg/L	Arzahl der MS Tn > 10.0 µg/L	_
				Arzahl der rsuchten M insgesamt	. ອ	n ™ 0.05	₹ 5.	_ 10. 20.	2 O.	_ <u>₹</u> 0.	zahlder MS > 10.0 μg/L	der MSTn
				zah ichte sges	Anzahl der I < BG	al de is ≤	el de sis	is s	ë ë	e s	9 O.	
				A iii	Izalı	ızat G bi	rzah 05 t	d L.	d G.	rzah 0 bi	rzał v	8
				를	Ā	Ar >B	A .0 .	4 °	₹ ٢	¥ ×	Ā	
			H öchstwert der jeweils letzten									
			"PSM"-Einzelwerte für	1929	1703	82	66	68	4	3	3	11,
			2009-2012									
				_		, V	_ ~	- 1	- 1		_	
PSM.	PSM-Metabolite	. Stoffe mit		Anzahl der untersuchten MS Tn insgesamt	Anzahl der MSTn < BG	Anzahl der MSTn > BG bis ≤ 0.05 µg/L	Anzahlder MSTn > 0.05 bis ≤ 0.1 µg/L	derMSTn ≤1.0μg/L	lderMSTn s≤3.0 µg/L	Anzahl der MSTn > 3.0 bis ≤ 10.0 µg/L	Anzahl der MS Tn > 10.0 µg/L	=
	pestizider Wirk			Anzahl der rsuchten M insgesamt	der M BG	9r M	2.5	 ∑ 0.	2 0.	7 0.0	zahl der MS > 10.0 µg/L	% der MSTn
(ohne die r	nicht relevanten M		"LAWA - Nr."	zah	후	⊒ de	al de	is g	는 Si	= s ₹ s	₽ 0. ₽ 0.	<u>-</u>
•	nk HygrisC, Stoffgruppe			A B	İza	ızal G b	ızat .05 I	Anzahl c	Anzahl d > 1.0 bis :	nzał O bi	zat v	8
				1	¥	₽ A	4 °	4 ×	₹ ,	4 ×	₹	
CHLORDAN	1		22161	3	2	1	0	0	0	0	0	33,3
MALATHION			27291	7	6	0	0		1	0		14,
AMITROL			40351	7	6	0	1	0	0			14,
ISO-CHLOR	RIDAZON		22871	228	217	4	5		0	0		4,8
ATRAZIN			22311	1754	1685	25	24	19	1	0		3,9
FENITROTH			27321 22341	27 1634	26 1577	11	0 27	0 19	0	0	0	3,7
DESETHYL BENTAZON			22901	1646	1604	21	9		1	0		3,4 2,5
1,2-DICHLO			20251	255	251	0	1	2	1	0		1,5
ETHIDIMUR			22761	673	664	1	3		0	0	0	1,3
BROMACIL			22891	1648	1627	6	8		0	0	0	1,2
SIMAZIN			22421	1746	1724	13	3		0	0	0	1,2
	OPYLATRAZIN		22621	1537	1520	5	7	5	0	0	0	1,1
1,2-DICHLO			20051 23411	707 102	700 101	0	0		1 0	3 0		0,9
IMIDACLOP	SULFANILID PRID		23861	204	101	2	0		0	0		0,9
DIURON			25001		202							0,8
			22301		202 1735		6	3	U	1 0		
ISOPROTUI	RON		22301 22511	1750 1755	202 1735 1742	6	6 4		0 1	0		0,7
GLYPHOSA			22511 21371	1750 1755 410	1735 1742 407	6 4 0	4 1	4 2	1 0	0	0	0,7
GLYPHOSA PYRIDAT	AT .		22511 21371 23621	1750 1755 410 158	1735 1742 407 157	6 4 0 1	4 1 0	4 2 0	1 0 0	0 0	0 0 0	0,7
GLYPHOSA PYRIDAT DESETHYL	TERBUTYLAZIN		22511 21371 23621 22671	1750 1755 410 158 1457	1735 1742 407 157 1448	6 4 0 1 6	4 1 0 2	4 2 0 1	1 0 0	0 0 0	0 0 0	0,7 0,6 0,6
GLYPHOSA PYRIDAT DESETHYL MECOPROI	TERBUTYLAZIN P		22511 21371 23621 22671 22551	1750 1755 410 158 1457 1649	1735 1742 407 157 1448 1639	6 4 0 1 6	4 1 0 2 1	4 2 0 1 2	0 0 0 0	0 0 0 0	0 0 0 0	0,7 0,6 0,6
PYRIDAT DESETHYL MECOPROI CHLORIDAZ	TERBUTYLAZIN P ZON		22511 21371 23621 22671 22551 22881	1750 1755 410 158 1457 1649 1728	1735 1742 407 157 1448 1639 1718	6 4 0 1 6 6	4 1 0 2	4 2 0 1 2	1 0 0	0 0 0 0	0 0 0 0 1	0,7 0,6 0,6 0,6
PYRIDAT DESETHYL MECOPROI CHLORIDAZ	TERBUTYLAZIN P		22511 21371 23621 22671 22551	1750 1755 410 158 1457 1649	1735 1742 407 157 1448 1639	6 4 0 1 6	4 1 0 2 1 6	4 2 0 1 2 2	1 0 0 0 0	0 0 0 0	0 0 0 0	0,7 0,6 0,6 0,6 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN	AT TERBUTYLAZIN P ZON IZTHIAZURON		22511 21371 23621 22671 22551 22881 22381	1750 1755 410 158 1457 1649 1728 1548	1735 1742 407 157 1448 1639 1718 1540 198 398	6 4 0 1 6 6 1 2 0	4 1 0 2 1 6 4 0	4 2 0 1 2 2 2 1 0	1 0 0 0 0 0 1	0 0 0 0 0	0 0 0 0 1 0 0 0	0,7 0,6 0,6 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPRODA METHABEN BOSCALID B-ENDOSU DIELDRIN	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081	1750 1755 410 158 1457 1649 1728 1548 199 400 404	1735 1742 407 157 1448 1639 1718 1540 198 398 402	6 4 0 1 6 6 1 2 0 2	4 1 0 2 1 6 4 0 0	4 2 0 1 2 2 2 2 1 0	1 0 0 0 0 1 1 0 0	0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICONA	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211	6 4 0 1 6 6 1 2 0 2 2	4 1 0 2 1 6 4 0 0 0	4 2 0 1 2 2 2 2 1 0 0	1 0 0 0 0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDO SU DIELDRIN EPOXICON. 1,3,5-TRICH	AT TERBUTYLAZIN P ZON AZTHIAZURON LFAN AZOL HLORBENZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 233	6 4 0 1 6 6 1 2 0 2 2 2	4 1 0 2 1 6 4 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0	1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211	6 4 0 1 6 6 1 2 0 2 2	4 1 0 2 1 6 4 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0	1 0 0 0 0 0 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,4
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDIOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL DRBUTADIEN		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 233 234	6 4 0 1 6 6 6 1 2 2 2 2 0 1 1 1 0 0	4 11 0 2 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 0 0 0 0 0	1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,4 0,4
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH 1,2,4-TRICH TRIADIMEN	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL RBUTADIEN HLORBENZOL HLORBENZOL HLORBENZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 233 234 235 237 243	6 4 0 1 6 1 1 2 0 2 2 2 0 1 1 1 0 0	4 11 0 2 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON. 1,3,5-TRICH HEXACHLO 1,2,3-TRICH 1,2,4-TRICH TRIADIMEN TRIFLURAL	AT TERBUTYLAZIN P ZON AZTHIAZURON LFAN AZOL HLORBENZOL RBUTADIEN HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22261	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 233 234 235 243 243 243 243 243	6 4 0 1 6 6 6 1 1 2 2 2 2 0 1 1 1 1 0 0 0 0 0 0 0 0 0	4 11 0 2 2 1 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDO SUI DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH T,2,4-TRICH TRIADIMEN TRIFLURAL TERBUTYL	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL DRBUTADIEN HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL IOL JIN AZIN		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22261	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 233 234 235 237 244 1751	6 4 0 1 6 6 6 1 2 2 2 2 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0	4 11 0 2 1 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH 1,2,4-TRICH TRIADIMEN TRIFLURAL TERBUTYL METRIBUZI	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL DRBUTADIEN HLORBENZOL HLORBENZOL IOL JIN AZIN IN		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22481 22481 22641	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757	1735 1742 407 157 1448 1639 1718 1540 211 233 234 235 237 243 244 255 1466	6 4 0 1 6 6 1 2 2 2 2 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0	4 11 0 2 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH TRIADIMEN TRIFLURAL TRIFLURAL METRIBUTYL METRIBUZI TEBUCONA	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL DRBUTADIEN HLORBENZOL HLORBENZOL IOL JIN AZIN IN		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22481 22481 22641 21191	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757 1471 618	1735 1742 407 157 1448 1639 1718 1540 198 402 211 233 234 235 237 243 284 1751 1466 616	6 4 0 1 6 6 1 2 2 2 2 0 1 1 1 0 0 1 1 4 4 4 4 4 4 4 4 4 4 4 4	4 11 0 2 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,3 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH 1,2,4-TRICH TRIADIMEN TRIFLURAL TERBUTYL METRIBUZI	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL RBUTADIEN HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22481 22481 22641	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757	1735 1742 407 157 1448 1639 1718 1540 211 233 234 235 237 243 244 255 1466	6 4 0 1 6 6 1 2 2 2 2 0 1 1 1 0 0 1 1 4 4 4 4 4 4 4 4 4 4 4 4	4 11 0 2 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,7 0,6 0,6 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH TRIADIMEN TRIFLURAL TERBUTYL TERBUTYL TEBUCONA DICAMBA	AT TERBUTYLAZIN P ZON AZTHIAZURON LFAN AZOL HLORBENZOL HAZIN IN AZOL LFAN		22511 21371 23621 22671 22651 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 22481 23411 22641 21191 26231 22051 22051	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757 1471 618 1189	1735 1742 407 157 1448 1639 1718 1540 198 402 211 233 234 235 237 243 244 1751 1466 616 1186 399 829	6 4 0 1 6 6 1 2 2 2 2 2 0 0 1 1 1 4 4 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1	4 11 0 22 11 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 1 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	077 088 088 090 090 090 090 090 090 090 090
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH TRIADIMEN TRIFLURAL TERBUTYL METRIBUZI TEBUCONA DICAMBA A-ENDOSU CLOPYRAL	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL PLORBENZOL HLORBENZOL HLORBENZOL JOL JIN AZOL LIN AZOL LIN LIN AZOL LFAN L LFAN L		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 25471 22481 22641 21191 26231 22051 22051 22021	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757 1471 618 1189 400 831	1735 1742 407 157 1448 1639 1718 1540 211 233 234 235 237 243 284 1751 1466 616 1186 399 399 29 21255	6 4 0 1 6 6 1 2 2 2 2 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1	4 11 0 2 16 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 1 1 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7.7.7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDA METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH TRIADIMEN TRIFLURAL TERBUTYL MET RIBUZI TEBUCONA DICAMBA A-ENDOSU MET ALAXY CLOPYRAL DINOTERB	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL HLORBENZOL LIN AZIN IN AZOL LFAN L LFAN L L		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 25471 22481 22641 21191 26231 22051 22051 22221 22191	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 236 238 244 285 1757 1471 618 1189 400 831 1258	1735 1742 407 157 1448 1639 1718 1540 198 398 402 211 112 233 234 235 237 243 243 243 1751 1466 616 616 618 399 829 829 829 829 829 829 829 829 829 8	6 4 0 1 1 6 6 6 1 2 2 2 2 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1	4 11 0 22 11 6 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 11 2 2 2 2 11 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	277 CE CE CE CE CE CE CE CE CE CE CE CE CE
GLYPHOSA PYRIDAT DESETHYL MECOPROI CHLORIDAZ METHABEN BOSCALID B-ENDOSU DIELDRIN EPOXICON, 1,3,5-TRICH HEXACHLO 1,2,3-TRICH TRIADIMEN TRIFLURAL TERBUTYL METRIBUZI TEBUCONA DICAMBA A-ENDOSU CLOPYRAL	AT TERBUTYLAZIN P ZON NZTHIAZURON LFAN AZOL HLORBENZOL RBUTADIEN HLORBENZOL IOL IN AZIN IN AZOL LFAN L LFAN L ID ESAT		22511 21371 23621 22671 22551 22881 22381 27591 22061 22081 23111 20611 20301 20591 20601 22261 25471 22481 22641 21191 26231 22051 22051 22021	1750 1755 410 158 1457 1649 1728 1548 199 400 404 212 234 235 236 238 244 285 1757 1471 618 1189 400 831	1735 1742 407 157 1448 1639 1718 1540 211 233 234 235 237 243 284 1751 1466 616 1186 399 399 29 21255	6 4 0 1 6 6 1 2 2 2 2 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1	4 11 0 2 16 6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 0 11 2 2 2 2 11 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	277 CE CE CE CE CE CE CE CE CE CE CE CE CE

PSM, PSM-Metabolite, Stoffe mit pestizider Wirkung (ohne die nicht relevanten Metabolite, nrM) GW-Datenbank HygrisC, Stoffgruppe 13, Stand: 20.01.2014	"LAWA - Nr."	Anzahl der untersuchten MSTn insgesamt	Anzahl der MSTn < BG	Arzahlder MSTn > BG bis ≤ 0.05 μg/L	Anzahider MSTn > 0.05 bis ≤ 0.1 µg/L	Anzahl der MSTn > 0.1 bis ≤ 1.0 μg/L	Anzahl der MSTn > 1.0 bis ≤ 3.0 µg/L	Anzahl der MSTn > 3.0 bis ≤ 10.0 µg/L	Anzahl der MSTn > 10.0 µg/L	% der MSTn
CYANAZIN	22461	592	591	0	0	1	0	0	0	0,
HEXAZINON	22611	1210	1208	1	1	0	0	0	0	0,
TERBUTRYN	22471	1247	1245	0	1	1	0	0	0	0,
LENACIL	26301	733	732	0	0	1	0	0	0	0,
MCPA AMETRYN	22531 22631	1644 837	1642 836	0	0	1	0	0	0	O, :
DIMEFURON	22751	860	859	0	0	1	0	0	0	0,
METOLACHLOR	22501	1749	1747	1	1	0	0	0	0	0,
QUINMERAC	21391	880	879	1	0	0	0	0	0	0,
FLURTAMONE	25661	1303	1302	1	0	0	0	0	0	0,
METOBROMURON	22361	1419	1418	0	1	0	0	0	0	0,
METAMITRON	22601	1454	1453	0	1	0	0	0	0	0,
DICHLORPROP	22541	1544	1543	0	0	0	1	0	0	0,
1,2-DIBROMETHAN	20091	118	118	0	0	0	0	0	0	0,
1,3-DICHLORPROPEN, CIS (Z)	20321	47	47	0	0	0	0	0	0	0,
1,3-DICHLORPROPEN, TRANS (E)	20331 20371	16 67	16 67	0	0	0	0	0	0	0,
1,3-DICHLORPROPEN TRICHLORNITROMETHAN	20461	1	1	0	0	0	0	0	0	0,0
CHLORBENZOL	20501	74	74	0	0	0	0	0	0	0,
E-HEXACHLORCYCLOHEXAN	20581	234	234	0	0	0	0	0	0	0,
AZOXYSTROBIN	20621	225	225	0	0	0	0	0	0	0,
1,2,4,5-TETRACHLORBENZOL	20671	79	79	0	0	0	0	0	0	0,
QUINTOZEN	20681	23	23	0	0	0	0	0	0	0,
PENTACHLORBENZOL	20691	131	131	0	0	0	0	0	0	0,
HEXACHLORBENZOL	20701	370	370	0	0		0	0	0	0,
A-HEXACHLORCYCLOHEXAN	21101	376	376	0	0	0	0	0	0	0,
AMIDOSULFURON	21141 21151	89 260	260	0	0	0	0	0	0	0,
B-HEXACHLORCYCLOHEXAN THIFENSULFURON-METHYL	21161	49	49	0	0	0	0	0	0	0,0
D-HEXACHLORCYCLOHEXAN	21171	244	244	0	0	0	0	0	0	0,
HEPTACHLOR	21201	390	390	0	0		0	0	0	0.
CLOMAZON	21211	3	3	0	0	0	0	0	0	0,
RIMSULFURON	21221	101	101	0	0	0	0	0	0	0,
ALACHLOR	21231	610	610	0	0	0	0	0	0	0,
AZIPROTRYN	21241	75	75	0	0	0	0	0	0	0,
MIREX	21251	232	232	0	0	0	0	0	0	0,
CARBOFURAN	21261	327	327	0	0	0	0	0	0	0,
CYPERMETHRIN DESETHYLSIMAZIN	21271 21281	10	7 10	0	0	0	0	0	0	0,
OXADIXYL OXADIXYL	21291	10	1	0	0	0	0	0	0	0,
PENCONAZOL	21311	60	60	0	0		0	0	0	0.
PROPICONAZOL	21331	237	237	0	0	0	0	0	0	0.
PROPOXUR	21341	35	35	0	0	0	0	0	0	0,
PENTACHLORPHENOL	21401	27	27	0	0	0	0	0	0	0,
4-CHLORPHENOL	21521	1	1	0	0	0	0	0	0	0,
QUINOXIFEN	21661	156	156	0	0	0	0	0	0	0,
CARFENTRAZONE-ETHYL	21681	109	109	0	0	0	0	0	0	0,
KRESOXIM-METHYL	21691	3	3	0	0	0	0	0	0	0,
2,4,5-TRICHLORPHENOL	21731	1	1	0	0	-	0	_	0	0,
FLUSILAZOL DIMETHENAMID	21761 21881	180	180	0	0		0	0	0	0,
MEFENPYR-DIETHYL	21941	9	9	0	0		0	-	0	0,
ACLONIFEN	21981	565	565	0	0	0	0	0	0	0,
G-HEXACHLORCYCLOHEXAN	22001	404	404	0	0		0	0	0	0,
ALDRIN	22011	484	484	0	0		0		0	0,
PARATHION-METHYL	22021	190	190	0	0	0	0	0	0	0,
PARATHION-ETHYL	22041	526	526	0	0		0	0	0	0,
ALPHA-, BETA-ENDOSULFAN	22071	56	56	0	0		0		0	0,
METHOXYCHLOR	22091	113	113	0	0		0	0	0	0,
ENDRIN DICHLOPENII	22101	376	376	0	0		0	0	0	0,
DICHLOBENIL 4,4-DDE	22111 22121	275 367	275 367	0	0		0	0	0	0,
4,4-DDD (TDE)	22131	261	261	0	0		0	0	0	0,
4.4-DDT	22141	261	261	0	0	0	0	0	0	0,
ALDICARB	22151	312	312	0	0		0	0	0	0,
ENDOSULFANSULFAT	22171	28	28	0	0		0		0	0,
ISODRIN	22181	233	233	0	0		0	0	0	0,
TRIALLAT	22231	184	184	0	0		0		0	
PSM, PSM-Metabolite, Stoffe mit pestizider Wirkung (ohne die nicht relevanten Metabolite, nrM) GW-Datenbank HygrisC, Stoffgruppe 13, Stand: 20.01.2014	"LAWA - Nr."	Anzahl der untersuchten MSTn insgesamt	Anzahl der MSTn < BG	Anzahlder MSTn > BG bis ≤ 0.05 µg/L	AnzahlderMSTn > 0.05 bis ≤ 0.1 µg/L	Anzahlder MSTn > 0.1 bis ≤1.0 µg/L	Anzahlder MSTn > 1.0 bis ≤ 3.0 µg/L	Anzahl der MSTn > 3.0 bis ≤ 10.0 µg/l	Anzahl der MSTn > 10.0 µg/L	

SWEP WNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACHL TRANS-HEPTACH TREBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRASUL TETRASUL TETRASUL TETRADIFON PROCHLORAZ NITROFEN PICLORAM IOXYNIL HALOXYFOP-ET FLUROXYPYR-1 GUIZALOFOP-ET GUIZALOFOP-ET CIS-CHLORDAN	CHLOREPOXID CHLOREPOXID CHLOREPOXID CHLOREPOXID CHOXYETHYL CH	22931 22941 22951 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641 23651 23661 23681 23691 23701 23711 23721 23721 23721 23731	395 170 1191 252 232 370 20 3 3 1067 13 243 107 470 563 19 280 20 4 20 20 20 21 22 24 1374 38 87 401 278	395 170 1191 252 330 370 20 3 1067 13 243 107 470 563 19 280 103 20 20 20 21 24 1374 24 1374 25 27 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDE 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACHL TRANS-HEPTACH NAPROPAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRADIFON PROCHLORAZ NITROFEN PICLORAM IOXYNIL HALOXYFOP-ET FLUAZIFOP-BUT FLUROCHLORIG FLUROXYPYR-1	OREPOXID CHLOREPOXID EB ETOLUIDIN HOXYETHYL TYL DON H-METHYLHEPTYLESTER	22941 22951 22961 22971 22981 22991 23091 23151 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641 23651 23661 23661 23681 23701 23711 23721	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 20 20 20 21 32 33 107 470 470 470 470 470 470 470 470 470 4	395 170 1191 252 232 370 20 3 1067 13 243 107 470 280 103 29 20 20 20 20 21 31 31 47 47 47 47 47 47 47 47 47 47 47 47 47	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELTAMETHRIM FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACHL TRANS-HEPTACH TRANSHEPTAM TERBUMETON DIMETHYLSULE DINOSEB DIKEGULAC TETRADIFON PROCHLORAZ NITROFEN PICLORAM IOXYNIL HALOXYFOP-ET FLUAZIFOP-BUT	OREPOXID CHLOREPOXID B FTOLUIDIN THOXYETHYL TYL	22941 22951 22961 22971 22981 22991 23091 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641 23651 23661 23661 23691 23691 23701	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 4 20 20 20 20 21 21 22 20 21 21 21 21 21 21 21 21 21 21 21 21 21	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 20 20 21 31 44 20 20 20 31 44 20 20 44 20 20 31 44 46 47 47 47 47 47 47 47 47 47 47 47 47 47	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2.4-DDD (TDE) 2.4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACM NAPROPAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULE DINOSEB DIKEGULAC TETRASUL	OREPOXID CHLOREPOXID B FTOLUIDIN THOXYETHYL	22941 22951 22961 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641 23661 23681 23681 23691	395 170 1191 252 232 370 20 3 1067 13 243 470 563 19 280 4 20 4 20 51 20 20 3	395 170 1191 252 232 370 20 3 3 1067 470 563 19 280 103 20 4 20 20 20 20 21 31 31 31 47 47 47 47 47 563 19 28 47 47 47 47 47 47 47 47 47 47 47 47 47	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACH NAPROPAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRADIFON PROCHLORAZ NITROFEN PICLORAM IOXYNIL	OREPOXID CHLOREPOXID EB CTOLUIDIN	22941 22951 22961 22971 22981 22991 23091 23151 23151 23161 23171 23221 23271 23281 23291 23311 23421 23591 23591 23601 23611 23641 23661 23661 23661	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 4 20 20 51	395 170 1191 252 370 20 3 1067 13 243 107 476 563 19 280 103 20 4 4 20 20 21 24 24 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC NAPROPAMID PROPYZAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRASUL TETRADIFON PROCHLORAZ NITROFEN PICLORAM	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641 23661	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 20 20 20	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 4 4 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHLITRANS-HEPTACK NAPROPAMID PROPYZAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRADIFON PROCHLORAZ	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611 23641	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 20 4 4 20	395 170 1191 252 232 370 20 3 3 1067 13 243 107 470 563 19 280 103 20 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC NAPROPAMID PROPYZAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL TETRASUL	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601 23611	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 4	395 170 1191 252 330 370 20 3 1067 13 243 107 470 563 19 280 103 20 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC NAPROPAMID PROPYZAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB DIKEGULAC TETRASUL	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23151 23161 23171 23221 23271 23281 23291 23311 23421 23581 23591 23601	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280 103 20 4	395 170 1191 252 232 370 20 3 1067 13 243 107 470 470 563 19 280 103 24 24 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELT AMETHRIN FLUROXYPYR CIS-HEPT ACHL TRANS-HEPTAC NAPROPAMID PROPYZAMID PROSULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF DINOSEB	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 233421 23421 23581	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19 280	395 170 1191 252 232 370 20 3 3 1067 13 243 107 470 563 19 280	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2.4-DDD (TDE) 2.4-DDT ANLAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC NAPROPAMID PRO PYZAMID PRO SULFOCAR TEBUTAM TERBUMETON DIMETHYLSULF	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311 23421	395 170 1191 252 330 370 20 3 1067 13 243 107 470 563 19 280 103	395 170 1191 252 3370 20 3 1067 133 243 107 470 563 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2.4-DDD (TDE) 2.4-DDT ANLAZIN DELTAMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACH NAPROPAMID PROSULFOCAR TEBUTAM TERBUMETON	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281 23291 23311	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563 19	395 170 1191 252 232 37 37 20 37 1067 13 243 107 470 563 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2.4-DDD (TDE) 2.4-DDT ANILAZIN DELT AMETHRIN FLUROXYPYR CIS-HEPT ACHL TRANS-HEPT ACHL NAPROPAMID PRO PYZAMID PRO SULF OCAR	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271 23281	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563	395 170 1191 252 232 370 20 3 1067 13 243 107 470 563	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2.4-DDD (TDE) 2.4-DDT ANILAZIN DELT AMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC NAPROPAMID PROPYZAMID	OREPOXID CHLOREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221 23271	395 170 1191 252 232 370 20 3 1067 13 243 107 470	395 170 1191 252 232 370 20 3 1067 13 243 107 470	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBET AMID 2.4-DDD (TDE) 2.4-DDT ANLAZIN DELT AMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTAC	OREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171 23221	395 170 1191 252 232 370 20 3 1067 13 243	395 170 1191 252 232 370 20 3 1067 13 243	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
MNCLOZOLIN KARBUT YLAT PIRIMICARB CARBET AMID 2,4-DDD (TDE) 2,4-DDT ANILAZIN DELT AMETHRIN FLUROXYPYR CIS-HEPTACHL TRANS-HEPTACHL	OREPOXID	22941 22951 22961 22971 22981 22991 23091 23151 23161 23171	395 170 1191 252 232 370 20 3 1067 13	395 170 1191 252 232 370 20 3 1067 13 243	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0
VINCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDT ANLAZIN DELTAMETHRIR FLUROXYPYR		22941 22951 22961 22971 22981 22991 23091 23151	395 170 1191 252 232 370 20 3 1067	395 170 1191 252 232 370 20 3 1067	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0
VINCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDT ANLAZIN DELTAMETHRIN	١	22941 22951 22961 22971 22981 22991 23091	395 170 1191 252 232 370 20 3	395 170 1191 252 232 370 20	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0
MNCLOZOLIN KARBUT YLAT PIRIMIC ARB CARBET AMID 2,4-DDD (TDE) 2,4-DDE 2,4-DDT ANILAZIN		22941 22951 22961 22971 22981 22991	395 170 1191 252 232 370 20	395 170 1191 252 232 370	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0
VINCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE) 2,4-DDE		22941 22951 22961 22971	395 170 1191 252 232	395 170 1191 252 232	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID 2,4-DDD (TDE)		22941 22951 22961	395 170 1191 252	395 170 1191 252	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0
MNCLOZOLIN KARBUTYLAT PIRIMICARB CARBETAMID		22941 22951	395 170 1191	395 170 1191	0 0 0	0	0 0	0	0	0	0
VINCLOZOLIN KARBUTYLAT			395	395	0	0	0				
VINCLOZOLIN		22931						Λ	n	Λ	- 0
		22911	85	1 851	0		. 01	0	ı Ul	0	0
		22861	20	20 85	0	0		0	0	0	0
THIAZAFLURON		22851	66	66	0	0	0	0	0	0	0
TEFLUBENZUR	ON	22841	20	20	0	0		0	0	0	0
SIDURON TEBUTHIURON		22821 22831	20	20	0	0		0	0	0	0
BIFENOX		22811	696	696	0	0	_	0	0	0	0
TOLYLFLUANID		22791	23	23	0	0	0	0	0	0	0
DICHLOFLUANIE)	22781	2	2	0	0		0	0	0	0
DIFLUBENZURO NEBURON)N	22741 22771	98 313	98 313	0	0		0	0	0	0
DIFENOXURON		22731	20	20	0	0		0	0	0	0
MONURON		22721	531	531	0	0		0	0	0	0
CHLOROXURON FLUOMETURON		22701 22711	466 73	466 73	0	0	_	0	0	0	0
PENCYCURON		22691	335	335	0	0	_	0	0	0	0
SEBUTYLAZIN		22681	741	741	0	0	0	0	0	0	0
DESMETRYN PROPHAM		22661	314	3 14	0	0		0	0	0	0
FENOPROP		22591 22651	536 314	536 314	0	0		0	0	0	0
MCPB		22581	737	737	0	0	_	0	0	0	0
2,4-DB		22571	880	880	0	0	_	0	0	0	0
2,4-D 2.4.5-T		22521 22561	1316 907	1316 907	0	0		0	0	0	0
PROMETRYN		22451	938	938	0	0	_	0	0	0	0
CHLORPROPHA	AM .	22441	185	185	0	0		0	0	0	0
PROPAZIN		22431	1166	1166	0	0		0	0	0	0
MET OXURON CRIMIDIN		22401 22411	1043	1043 160	0	0	_	0	0	0	0
FENURON		22391	295	295	0	0		0	0	0	0
MONOLINURON		22371	855	855	0	0	0	0	0	0	0
BUTURON		22331	123	123	0	0		0	0	0	0
PROPANIL LINURON		22291 22321	130 944	130 944	0	0		0	0	0	0
NORFLURAZON		22281	15	15	0	0		0	0	0	0
PHENMEDIPHAI TRIADIMEFON		22241 22251	544 158	544 158	0	0		0	0	0	0

TRANS-CHLORDAN	24561	233	233	0	0	0	0	0	0	+
2-CHLORANILIN	25141	1	1	0	0	0	0	0	0	
4-CHLORANILIN	25161	1	1	0	0	0	0	0	0	
PENDIMETHALIN	25491	983	983	0	0	0	0	0	0	
FENPROPIMORPH	25511	185	185	0	0	0	0	0	0	
FLUFENACET	25531	774	774	0	0	0	0	0	0	
CLODINAFOP-PROPAGYL	25651	173	173	0	0	0	0	0	0	
FENOXAPROP-P-ETHYL	25671	176	176	0	0	0	0	0	0	
2-METHYL-4,6-DINITROPHENOL	25911	317	317	0	0	0	0	0	0	
BROMOXYNIL	26221	1468	1468	0	0	0	0	0	0	
TRICLOPYRL	26241	165	165	0	0	0	0	0	0	
DIPHENYLSULPHON	26251	241	241	0	0	0	0	0	0	
DIFLUFENICAN	26261	797	797	0	0	0	0	0	0	
CHLORFENVINPHOS	26271	221	221	0	0	0	0	0	0	
HALOXYFOP	26331	549	549	0	0	0	0	0	0	
CHLORBROMURON	26361	65	65	0	0	0	0	0	0	
	26931	139	139	0	0	0	0	0	0	
CHLORPYRIFOS-ETHYL				0	_				0	-
COUMAPHOS	27201	170	170		0	0	0	0		-
DIAZINON	27211	179	179	0	0	0	0	0	0	
DISULFOTON	27221	25	25	0	0	0	0	0	0	-
DICHLORVOS	27231	7	7	0	0	0	0	0	0	4
ETRIMPHOS	27241	7	7	0	0	0	0	0	0	
AZINPHOS-METHYL	27251	40	40	0	0	0	0	0	0	
AZINPHOS-ETHYL	27261	229	229	0	0	0	0	0	0	
TRICHLORFON	27271	5	5	0	0	0	0	0	0	
ISOPHENPHOS	27281	2	2	0	0	0	0	0	0	
DIMETHOAT	27301	59	59	0	0	0	0	0	0	
FENTHION	27311	5	5	0	0	0	0	0	0	
MEVINPHOS	27331	7	7	0	0	0	0	0	0	
DEMETON-S-METHYL	27351	22	22	0	0	0	0	0	0	
TRIAZOPHOS	27371	7	7	0	0	0	0	0	0	
METHAMIDOPHOS	27381	2	2	0	0	0	0	0	0	
METHIDATHION	27421	22	22	0	0	0	0	0	0	
PYRAZOPHOS	27461	20	20	0	0	0	0	0	0	
PIRIMIPHOS-ETHYL	27471	20	20	0	0	0	0	0	0	
ETHION	27481	20	20	0	0	0	0	0	0	
FENCHLORPHOS	27491	20	20	0	0	0	0	0	0	
HEPTENOPHOS	27501	20	20	0	0	0	0	0	0	
THIOMETON	27511	20	20	0	0	0	0	0	0	
OXYDEMETON-METHYL	27551	35	35	0	0	0	0	0	0	
PHOXIM	27561	33	3	0	0	0	0	0	0	
		_	557	0	0	0	0	0	0	-
SULCOTRION	27861	557			_					-
MESOTRION	27871	343	343	0	0	0	0	0	0	-
NICOSULFURON	27881	455	455	0	0	0	0	0	0	
FLUAZIFOP-P	27891	499	499	0	0	0	0	0	0	-
FENOXAPROP-P	27901	246	246	0	0	0	0	0	0	
BROMOPHOS	27981	13	13	0	0	0	0	0	0	
CARBARYL	28011	8	8	0	0	0	0	0	0	
CARBENDAZIM	28021	4	4	0	0	0	0	0	0	
DESMEDIPHAM	28631	50	50	0	0	0	0	0	0	
HEPTACHLOREPOXID, CIS UND TRANS	28891	155	155	0	0	0	0	0	0	
IRGAROL 1051	40021	157	157	0	0	0	0	0	0	
PICOXYSTROBIN	40231	194	194	0	0	0	0	0	0	
PYRACLOSTROBIN	40241	194	194	0	0	0	0	0	0	
BENZTHIAZURON	40391	13	13	0	0	0	0	0	0	
BITERTANOL	40401	8	8	0	0	0	0	0	0	
CHLORBUFAM	40421	13	13	0	0	0	0	0	0	
FENPROPIDIN	40461	44	44	0	0	0	0	0	0	
LAMBDA-CYHALOTHRIN	40481	2	2	0	0	0	0	0	0	
METOSULAM	40501	36	36	0	0	0	0	0	0	
METSULFURONMETHYL	40511	51	51	0	0	0	0	0	0	
TERBACIL	40551	13	13	0	0	0	0	0	0	
	40561	6	6	0	0	0	0	0	0	+
CHLORTHALONIL										

Tabelle B15: (zu Frage 64) Messstellen mit Maximalwert Nitrat >50 mg/L im Zeitraum 2013-2014 (Stand: HygrisC, 14.08.2014)

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05111000	Stadt Düssel- dorf	032032171	UWB-Ddorf 01253	Betreibermessstellen (für GWÜ geeignet)	72,0	LANUV
05111000	Stadt Düssel- dorf	032502643	UWB-Ddorf 00213	Betreibermessstellen (für GWÜ geeignet)	101,7	LANUV
05112000	Stadt Duisburg	042063681	LINEG_2570H	Betreibermessstellen (für GWÜ geeignet)	61,9	Fremdlabor
05116000	Stadt Mön- chengladbach	080201623	LELOH WALD 218	Grundwassergüte- messstellen des Landes	61,4	LANUV
05116000	Stadt Mön- chengladbach	086573470	E Rheindahlen Br.3	Rohwasserüberwa- chung (für GWÜ geeignet)	60,4	Fremdlabor
05116000	Stadt Mön- chengladbach	086573974	E GATZWEILER Hor.1	Rohwasserüberwa- chung (für GWÜ geeignet)	72,0	Fremdlabor
05116000	Stadt Mön- chengladbach	086573986	E GATZWEILER Hor.2	Rohwasserüberwa- chung (für GWÜ geeignet)	66,5	Fremdlabor
05116000	Stadt Mön- chengladbach	289002916	Leloh Wald 218	Betreibermessstellen (für GWÜ geeignet)	59,2	Fremdlabor
05116000	Stadt Mön- chengladbach	289005516	Mühlenbach 225	Betreibermessstellen (für GWÜ geeignet)	113,8	Fremdlabor
05116000	Stadt Mön- chengladbach	289086516	Hehn	Betreibermessstellen (für GWÜ geeignet)	111,4	Fremdlabor
05116000	Stadt Mön- chengladbach	086541330	E Hoppbruch Br.11	Rohwasserüberwa- chung (für GWÜ geeignet)	54,5	Fremdlabor
05116000	Stadt Mön- chengladbach	086573834	E Rasseln Br.6	Rohwasserüberwa- chung (für GWÜ geeignet)	66,5	Fremdlabor
05116000	Stadt Mön- chengladbach	086574000	E Rasseln Br.7	Rohwasserüberwa- chung (für GWÜ geeignet)	60,1	Fremdlabor
05116000	Stadt Mön- chengladbach	086574012	E Rasseln Br. 14	Rohwasserüberwa- chung (für GWÜ geeignet)	77,1	Fremdlabor
05116000	Stadt Mön- chengladbach	289078817	M.Gladb.	Betreibermessstellen (für GWÜ geeignet)	107,0	Fremdlabor
05154004	Gemeinde Bedburg-Hau	080301691	SCHNEPPENBAUM 317	Grundwassergüte- messstellen des Landes	110,9	LANUV
05154004	Gemeinde Bedburg-Hau	080303316	LOUISENDORF 394	Grundwassergüte- messstellen des Landes	129,5	LANUV
05154008	Stadt Em- merich	080301435	KA ELTEN 291	Grundwassergüte- messstellen des Landes	66,3	LANUV
05154008	Stadt Em- merich	080302660	ELTEN	Grundwassergüte- messstellen des Landes	52,6	LANUV
05154012	Stadt Geldern	080302180	HOHEN-HOLTAPPEL	Grundwassergüte- messstellen des Landes	89,3	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05154012	Stadt Geldern	086612037	E WW GELDERN BR.VI	Rohwasserüberwa- chung (für GWÜ geeignet)	71,6	Fremdlabor
05154016	Stadt Goch	080100818	GOCH SCHULE 034	Grundwassergüte- messstellen des Landes	53,5	LANUV
05154016	Stadt Goch	080301721	FLUGPLATZ 320	Grundwassergüte- messstellen des Landes	108,7	LANUV
05154016	Stadt Goch	080303183	ERVSCHERWEG 381	Grundwassergüte- messstellen des Landes	103,0	LANUV
05154016	Stadt Goch	086621520	E SW Kleve Br.6	Rohwasserüberwa- chung (für GWÜ geeignet)	61,7	Fremdlabor
05154016	Stadt Goch	086621531	E SW Kleve Br.7	Rohwasserüberwa- chung (für GWÜ geeignet)	60,6	Fremdlabor
05154016	Stadt Goch	086621543	E SW Kleve Br.8	Rohwasserüberwa- chung (für GWÜ geeignet)	51,8	Fremdlabor
05154016	Stadt Goch	086621555	E SW Kleve Br.9	Rohwasserüberwa- chung (für GWÜ geeignet)	52,2	Fremdlabor
05154016	Stadt Goch	086621567	E SW Kleve Br.5	Rohwasserüberwa- chung (für GWÜ geeignet)	63,9	Fremdlabor
05154016	Stadt Goch	086621579	E SW Kleve Br.10	Rohwasserüberwa- chung (für GWÜ geeignet)	51,8	Fremdlabor
05154016	Stadt Goch	086621622	E SW Kleve HoriBr.	Rohwasserüberwa- chung (für GWÜ geeignet)	56,7	Fremdlabor
05154024	Stadt Kalkar	080301666	EM.EYLAND 314	Grundwassergüte- messstellen des Landes	84,0	Fremdlabor
05154024	Stadt Kalkar	080301708	NIEDERMÖRMTER 318	Grundwassergüte- messstellen des Landes	66,3	Fremdlabor
05154024	Stadt Kalkar	080301710	APPELDORN 319	Grundwassergüte- messstellen des Landes	61,0	LANUV
05154024	Stadt Kalkar	080303420	OP DE WACHT 405	Grundwassergüte- messstellen des Landes	70,3	LANUV
05154028	Gemeinde Kerken	080302944	HOOG POELYCK 371	Grundwassergüte- messstellen des Landes	50,4	LANUV
05154032	Stadt Kevelaer	080301009	SCHULE HY 248	Grundwassergüte- messstellen des Landes	77,4	LANUV
05154032	Stadt Kevelaer	080301010	ALTWETTENER WEG 249	Grundwassergüte- messstellen des Landes	80,4	LANUV
05154032	Stadt Kevelaer	080302646	HOENSLAERSMÜHLE	Grundwassergüte- messstellen des Landes	55,7	LANUV
05154036	Stadt Kleve	080303407	KLEVE WARBEYEN 403	Grundwassergüte- messstellen des Landes	53,9	LANUV
05154036	Stadt Kleve	080301447	BIMMEN 292	Grundwassergüte- messstellen des Landes	51,3	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05154036	Stadt Kleve	080200758	REICHSWALD 162	Grundwassergüte- messstellen des Landes	70,3	LANUV
05154040	Gemeinde Kranenburg	080301502	SCHOTTHEIDE 298	Grundwassergüte- messstellen des Landes	55,7	LANUV
05154044	Stadt Rees	080200930	BERKSWICK 180	Grundwassergüte- messstellen des Landes	53,0	Fremdlabor
05154052	Stadt Straelen	080301794	FOSSA 327	Grundwassergüte- messstellen des Landes	131,3	LANUV
05154052	Stadt Straelen	080302762	STRAELEN B58	Grundwassergüte- messstellen des Landes	59,2	LANUV
05154052	Stadt Straelen	080301060	EHRENMAL HY 254	Grundwassergüte- messstellen des Landes	98,6	LANUV
05154052	Stadt Straelen	080301800	STADTHALLE 328	Grundwassergüte- messstellen des Landes	51,3	LANUV
05154052	Stadt Straelen	080302142	BROEKHUYSEN WOLTERS	Grundwassergüte- messstellen des Landes	181,2	Fremdlabor
05154052	Stadt Straelen	080302154	BOEKHOLT HILDE- BRAND	Grundwassergüte- messstellen des Landes	159,1	LANUV
05154056	Gemeinde Uedem	080000113	UEDEMERFELD Nr 05	Grundwassergüte- messstellen des Landes	53,5	LANUV
05154056	Gemeinde Uedem	080300960	HOLLEN HY 244	Grundwassergüte- messstellen des Landes	88,4	LANUV
05154056	Gemeinde Uedem	080302543	UEDEM KEPPELN	Grundwassergüte- messstellen des Landes	95,5	LANUV
05154056	Gemeinde Uedem	080302555	UEDEM GRILL- PLATZ	Grundwassergüte- messstellen des Landes	168,8	LANUV
05154064	Gemeinde Weeze	080100697	WEEZE GUT HEES 01	Grundwassergüte- messstellen des Landes	96,8	LANUV
05154064	Gemeinde Weeze	080303201	MARIENWASSERWEG 383	Grundwassergüte- messstellen des Landes	71,2	LANUV
05158004	Stadt Erkrath	030302810	Erkr-Niermannsweg	Grundwassergüte- messstellen des Landes	159,1	LANUV
05162008	Stadt Greven- broich	288125319	Dannerhof	Betreibermessstellen (für GWÜ geeignet)	65,4	Fremdlabor
05162008	Stadt Greven- broich	289076511	Hemmerden2	Betreibermessstellen (für GWÜ geeignet)	90,2	Fremdlabor
05162008	Stadt Greven- broich	288194214	Neubrück	Betreibermessstellen (für GWÜ geeignet)	65,4	Fremdlabor
05162008	Stadt Greven- broich	289079512	Kapellen	Betreibermessstellen (für GWÜ geeignet)	84,0	Fremdlabor
05162016	Stadt Kaarst	080301332	DREILINDENHOF 281	Grundwassergüte- messstellen des Landes	65,0	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05162020	Stadt Kor- schenbroich	080100910	GLEHN BIRKHOF 029	Grundwassergüte- messstellen des Landes	99,9	LANUV
05162020	Stadt Kor- schenbroich	289076316	Weilerhofe	Betreibermessstellen (für GWÜ geeignet)	59,7	Fremdlabor
05162022	Stadt Meer- busch	086551863	E Rheinfähre HBr.1	Rohwasserüberwa- chung (für GWÜ geeignet)	66,3	Fremdlabor
05162022	Stadt Meer- busch	086551875	E Rheinfähre HBr.2	Rohwasserüberwa- chung (für GWÜ geeignet)	74,1	Fremdlabor
05162022	Stadt Meer- busch	086555443	E WW Lank FBr.2	Rohwasserüberwa- chung (für GWÜ geeignet)	59,9	Fremdlabor
05162022	Stadt Meer- busch	086555455	E WW Lank FBr.3	Rohwasserüberwa- chung (für GWÜ geeignet)	53,7	Fremdlabor
05162022	Stadt Meer- busch	086555467	E WW Lank FBr.4	Rohwasserüberwa- chung (für GWÜ geeignet)	60,0	Fremdlabor
05162022	Stadt Meer- busch	086594606	E BG Osterath Br.1	Rohwasserüberwa- chung (für GWÜ geeignet)	56,0	Fremdlabor
05162022	Stadt Meer- busch	086594618	E BG Osterath Br.2	Rohwasserüberwa- chung (für GWÜ geeignet)	58,1	Fremdlabor
05162024	Stadt Neuss	289079317	Neuss 1	Betreibermessstellen (für GWÜ geeignet)	81,8	Fremdlabor
05162024	Stadt Neuss	089952728	AA14/15-GW272-B1- M1	Grundwassermess- stellen der Kommu- nen	226,6	Fremdlabor
05162024	Stadt Neuss	089952730	AA14/15-GW273-B2- M1	Grundwassermess- stellen der Kommu- nen	71,1	Fremdlabor
05166004	Gemeinde Brüggen	080301095	DILBORN 257	Grundwassergüte- messstellen des Landes	70,7	Fremdlabor
05166004	Gemeinde Brüggen	080301915	BRACHT FRIEDHOF 339	Grundwassergüte- messstellen des Landes	216,6	Fremdlabor
05166004	Gemeinde Brüggen	086594734	E WW LÜTTELBR. E II	Rohwasserüberwa- chung (für GWÜ geeignet)	58,8	Fremdlabor
05166004	Gemeinde Brüggen	086594746	E WW LÜTTELBR. E I	Rohwasserüberwa- chung (für GWÜ geeignet)	72,9	Fremdlabor
05166008	Gemeinde Grefrath	086598715	E Grefrath Fl.Br.3	Rohwasserüberwa- chung (für GWÜ geeignet)	60,1	Fremdlabor
05166008	Gemeinde Grefrath	086598727	E Grefrath Fl.Br.4	Rohwasserüberwa- chung (für GWÜ geeignet)	84,0	Fremdlabor
05166012	Stadt Kempen	080302063	KAMPERLINGS	Grundwassergüte- messstellen des Landes	54,8	LANUV
05166012	Stadt Kempen	080302520	KEMPEN KINDER- GARTEN	Grundwassergüte- messstellen des Landes	74,3	LANUV
05166012	Stadt Kempen	080300364	STEVESHOF	Grundwassergüte- messstellen des Landes	74,7	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05166016	Stadt Nettetal	086596147	E WGA GRENZW EII	Rohwasserüberwa- chung (für GWÜ geeignet)	118,0	Fremdlabor
05166016	Stadt Nettetal	080201520	VENLOER-HEIDE 195	Grundwassergüte- messstellen des Landes	65,4	LANUV
05166016	Stadt Nettetal	080201570	FLOTHEND 200	Grundwassergüte- messstellen des Landes	247,1	LANUV
05166016	Stadt Nettetal	080201593	RENNEKOVEN 202	Grundwassergüte- messstellen des Landes	88,4	Fremdlabor
05166016	Stadt Nettetal	080301850	MODELLFLUGPLATZ 333	Grundwassergüte- messstellen des Landes	187,9	LANUV
05166016	Stadt Nettetal	080302178	STEGERHOF BAHN	Grundwassergüte- messstellen des Landes	75,1	Fremdlabor
05166016	Stadt Nettetal	289002114	Venloer-Heide 19	Betreibermessstellen (für GWÜ geeignet)	72,9	Fremdlabor
05166016	Stadt Nettetal	289002412	Flothend 200	Betreibermessstellen (für GWÜ geeignet)	245,7	Fremdlabor
05166020	Gemeinde Niederkrüchten	086580760	E WW NIEDERKR. BRII	Rohwasserüberwa- chung (für GWÜ geeignet)	109,8	Fremdlabor
05166020	Gemeinde Niederkrüchten	086580772	E WW NIE- DERKR.BRIII	Rohwasserüberwa- chung (für GWÜ geeignet)	109,8	Fremdlabor
05166020	Gemeinde Niederkrüchten	288129519	Niederkrüchten	Betreibermessstellen (für GWÜ geeignet)	151,8	Fremdlabor
05166020	Gemeinde Niederkrüchten	289081014	Huegelhof	Betreibermessstellen (für GWÜ geeignet)	93,7	Fremdlabor
05166020	Gemeinde Niederkrüchten	289085214	Niederkr. Tab 11	Betreibermessstellen (für GWÜ geeignet)	99,9	Fremdlabor
05166024	Gemeinde Schwalmtal	080300686	VOGELSRATH 211	Grundwassergüte- messstellen des Landes	126,9	LANUV
05166024	Gemeinde Schwalmtal	080201611	RENNEPERSTR. 212	Grundwassergüte- messstellen des Landes	95,5	LANUV
05166024	Gemeinde Schwalmtal	080300674	DILKRATH 210	Grundwassergüte- messstellen des Landes	120,2	Fremdlabor
05166032	Stadt Viersen	080201581	SCHMALENEND 201	Grundwassergüte- messstellen des Landes	114,9	Fremdlabor
05166032	Stadt Viersen	080201600	RÖHLENEND 203	Grundwassergüte- messstellen des Landes	121,1	LANUV
05166032	Stadt Viersen	086592221	E WG1 Dülken Br. 4	Rohwasserüberwa- chung (für GWÜ geeignet)	89,3	Fremdlabor
05166032	Stadt Viersen	086592233	E WG1 Dülken Br. 5	Rohwasserüberwa- chung (für GWÜ geeignet)	96,4	Fremdlabor
05166032	Stadt Viersen	086592282	E WG1 Dülken Br. 6	Rohwasserüberwa- chung (für GWÜ geeignet)	93,3	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05166032	Stadt Viersen	086594862	E WG10 Boisheim Br2	Rohwasserüberwa- chung (für GWÜ geeignet)	89,0	Fremdlabor
05166032	Stadt Viersen	086594886	E WG10 Boisheim Br4	Rohwasserüberwa- chung (für GWÜ geeignet)	114,9	Fremdlabor
05166032	Stadt Viersen	080200953	BOCKERT 183	Grundwassergüte- messstellen des Landes	78,2	LANUV
05166032	Stadt Viersen	080302798	SÜCHTELN 350	Grundwassergüte- messstellen des Landes	51,7	LANUV
05166032	Stadt Viersen	086580346	E WG2 Viersen Br. 8	Rohwasserüberwa- chung (für GWÜ geeignet)	76,4	Fremdlabor
05166032	Stadt Viersen	086580449	E WG2 Viersen Br. 2	Rohwasserüberwa- chung (für GWÜ geeignet)	69,9	Fremdlabor
05166032	Stadt Viersen	289078714	Duelken	Betreibermessstellen (für GWÜ geeignet)	105,6	Fremdlabor
05166036	Stadt Willich	086592786	WW FELLERHÖFE E VI	Rohwasserüberwa- chung (für GWÜ geeignet)	142,8	Fremdlabor
05166036	Stadt Willich	086592798	WW FELLERHÖFE EVII	Rohwasserüberwa- chung (für GWÜ geeignet)	104,8	Fremdlabor
05166036	Stadt Willich	086592830	WW FELLERHÖFE EVIII	Rohwasserüberwa- chung (für GWÜ geeignet)	113,8	Fremdlabor
05166036	Stadt Willich	086592841	WW FELLERHÖFE EIX	Rohwasserüberwa- chung (für GWÜ geeignet)	125,8	Fremdlabor
05166036	Stadt Willich	080302040	VENNHEIDE	Grundwassergüte- messstellen des Landes	66,3	LANUV
05170012	Gemeinde Hamminkeln	040100261	BISLICHER WALD 42	Grundwassergüte- messstellen des Landes	65,0	LANUV
05170012	Gemeinde Hamminkeln	040205034	Telgerhuck	Betreibermessstellen (für GWÜ geeignet)	58,8	LANUV
05170016	Gemeinde Hünxe	040060706	1 06 070 - HS 112	Betreibermessstellen (für GWÜ geeignet)	57,9	LANUV
05170016	Gemeinde Hünxe	040306010	Gahlender Str	Grundwassergüte- messstellen des Landes	83,1	LANUV
05170016	Gemeinde Hünxe	040206026	Weseler Weg	Grundwassergüte- messstellen des Landes	186,1	LANUV
05170024	Stadt Moers	042011097	LINEG_1251	Betreibermessstellen (für GWÜ geeignet)	58,9	Fremdlabor
05170028	Stadt Neukir- chen-Vluyn	040200504	NEUKIRCHEN NR 121	Grundwassergüte- messstellen des Landes	83,9	LANUV
05170032	Stadt Rhein- berg	042014542	LINEG_1597	Betreibermessstellen (für GWÜ geeignet)	55,9	Fremdlabor
05170036	Gemeinde Schermbeck	040306021	Rittstege	Betreibermessstellen (für GWÜ geeignet)	69,0	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05170036	Gemeinde Schermbeck	040071005	0 07 100 - HS 115	Grundwassergüte- messstellen des Landes	64,5	LANUV
05170036	Gemeinde Schermbeck	040060100	1 06 010 - HS 103	Grundwassergüte- messstellen des Landes	65,0	LANUV
05170040	Gemeinde Sonsbeck	040302120	LABBECK SCHULE	Grundwassergüte- messstellen des Landes	52,2	LANUV
05170040	Gemeinde Sonsbeck	040304024	Pauenstraße	Grundwassergüte- messstellen des Landes	84,0	LANUV
05170048	Stadt Wesel	040200267	STAWA 79	Grundwassergüte- messstellen des Landes	62,8	LANUV
05170048	Stadt Wesel	042016368	LINEG_1758	Betreibermessstellen (für GWÜ geeignet)	57,9	Fremdlabor
05170048	Stadt Wesel	042065343	LINEG_2727	Betreibermessstellen (für GWÜ geeignet)	71,9	Fremdlabor
05170052	Stadt Xanten	042016459	LINEG_1767	Betreibermessstellen (für GWÜ geeignet)	59,9	Fremdlabor
05170052	Stadt Xanten	042060564	LINEG_2211-2H	Betreibermessstellen (für GWÜ geeignet)	156,8	Fremdlabor
05315000	Stadt Köln	076555112	MUELHENS K 6 R1	Grundwassergüte- messstellen des Landes	52,6	LANUV
05315000	Stadt Köln	073540912	WEIL 586 A	Betreibermessstellen (für GWÜ geeignet)	61,1	Fremdlabor
05315000	Stadt Köln	073543615	WEIL 604 A	Betreibermessstellen (für GWÜ geeignet)	98,0	Fremdlabor
05315000	Stadt Köln	073532204	GEW Koeln HK West12	Rohwasserüberwa- chung (für GWÜ geeignet)	54,2	Fremdlabor
05316000	Stadt Lever- kusen	073770309	EVL LEV BR.2	Rohwasserüberwa- chung (für GWÜ geeignet)	68,6	Fremdlabor
05334002	Stadt Aachen	010203187	Vetschau,Autobahnbr	Grundwassergüte- messstellen des Landes	60,1	LANUV
05334002	Stadt Aachen	010409040	Pionierquelle	Grundwassergüte- messstellen des Landes	60,6	LANUV
05334008	Stadt Baeswei- ler	010202791	LOVERICH	Grundwassergüte- messstellen des Landes	103,4	LANUV
05334016	Stadt Herzo- genrath	010202810	HERBACH	Grundwassergüte- messstellen des Landes	165,3	LANUV
05334016	Stadt Herzo- genrath	010203862	Wefelen 2	Grundwassergüte- messstellen des Landes	115,4	LANUV
05334036	Stadt Würselen	016001862	FA.KINKARTZ BR.F2	Betreibermessstellen (für GWÜ geeignet)	65,0	Fremdlabor
05334036	Stadt Würselen	219671916	Merzbrück	Betreibermessstellen (für GWÜ geeignet)	112,3	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05358004	Gemeinde Aldenhoven	218639016	Duerboslar	Betreibermessstellen (für GWÜ geeignet)	84,9	Fremdlabor
05358008	Stadt Düren	218229215	Düren	Betreibermessstellen (für GWÜ geeignet)	79,6	Fremdlabor
05358008	Stadt Düren	218734414	Birkesdorf	Betreibermessstellen (für GWÜ geeignet)	68,1	Fremdlabor
05358012	Stadt Heim- bach	010203254	VLATTEN FLACH	Grundwassergüte- messstellen des Landes	63,6	LANUV
05358024	Stadt Jülich	219601215	MERZENHAUSEN 2	Betreibermessstellen (für GWÜ geeignet)	56,6	Fremdlabor
05358024	Stadt Jülich	210305861	ZF Juelich P6	Betreibermessstellen (für GWÜ geeignet)	138,3	Fremdlabor
05358024	Stadt Jülich	210305873	ZF Juelich P7	Betreibermessstellen (für GWÜ geeignet)	237,9	Fremdlabor
05358024	Stadt Jülich	210305927	ZF Juelich P12	Emittentenmessstel- len, Anlagenüberwa- chung	122,0	Fremdlabor
05358024	Stadt Jülich	218203317	Hambach	Betreibermessstellen (für GWÜ geeignet)	80,6	Fremdlabor
05358024	Stadt Jülich	219278714	Juel-Jaegr	Betreibermessstellen (für GWÜ geeignet)	67,7	Fremdlabor
05358028	Gemeinde Kreuzau	010306523	KS Zens GWM 1	Betreibermessstellen (für GWÜ geeignet)	101,2	Fremdlabor
05358028	Gemeinde Kreuzau	010306547	KS Zens GWM 3	Betreibermessstellen (für GWÜ geeignet)	100,3	Fremdlabor
05358036	Stadt Linnich	219610216	Linnig 3B flach	Betreibermessstellen (für GWÜ geeignet)	56,1	Fremdlabor
05358036	Stadt Linnich	219610812	LINNG9A	Betreibermessstellen (für GWÜ geeignet)	53,0	Fremdlabor
05358036	Stadt Linnich	219610824	LINNG9A	Betreibermessstellen (für GWÜ geeignet)	55,7	Fremdlabor
05358040	Gemeinde Merzenich	010308441	STRABAG,ESCHW-FE P2	Emittentenmessstel- len, Anlagenüberwa- chung	95,5	Fremdlabor
05358040	Gemeinde Merzenich	218413518	Golzheim	Betreibermessstellen (für GWÜ geeignet)	65,4	LANUV
05358040	Gemeinde Merzenich	218413518	Golzheim	Betreibermessstellen (für GWÜ geeignet)	65,4	LANUV
05358040	Gemeinde Merzenich	219478314	Distelrath	Betreibermessstellen (für GWÜ geeignet)	56,6	Fremdlabor
05358040	Gemeinde Merzenich	219478326	Distelrath	Betreibermessstellen (für GWÜ geeignet)	51,3	Fremdlabor
05358044	Stadt Nideggen	010203436	Nideggen,Pegel Tief	Grundwassergüte- messstellen des Landes	62,3	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05358048	Gemeinde Niederzier	010201117	Niederzier Nr. 14	Grundwassergüte- messstellen des Landes	61,9	LANUV
05358048	Gemeinde Niederzier	010202328	FZJ Nr. 38	Rohwasserüberwa- chung (für GWÜ geeignet)	87,1	Fremdlabor
05358048	Gemeinde Niederzier	010202341	FZJ Nr. 40	Grundwassergüte- messstellen des Landes	62,5	Fremdlabor
05358048	Gemeinde Niederzier	010202500	FZJ Nr. 53	Betreibermessstellen (für GWÜ geeignet)	94,2	Fremdlabor
05358048	Gemeinde Niederzier	010202663	FZJ Nr. 64	Grundwassergüte- messstellen des Landes	67,3	Fremdlabor
05358048	Gemeinde Niederzier	010407066	ELLEN BR. 3	Rohwasserüberwa- chung (für GWÜ geeignet)	53,0	Fremdlabor
05358048	Gemeinde Niederzier	010407121	FZJ Flachbrunnen 2	Rohwasserüberwa- chung (für GWÜ geeignet)	79,5	Fremdlabor
05358048	Gemeinde Niederzier	010408400	ELLEN BR. 1	Rohwasserüberwa- chung (für GWÜ geeignet)	58,8	Fremdlabor
05358048	Gemeinde Niederzier	010408411	ELLEN BR. 2	Rohwasserüberwa- chung (für GWÜ geeignet)	60,6	Fremdlabor
05358048	Gemeinde Niederzier	010408538	FZJ Flachbrunnen 1	Rohwasserüberwa- chung (für GWÜ geeignet)	64,3	Fremdlabor
05358048	Gemeinde Niederzier	210404711	Hambach Fl. Br.I	Rohwasserüberwa- chung (für GWÜ geeignet)	91,3	Fremdlabor
05358048	Gemeinde Niederzier	210404802	Hambach	Rohwasserüberwa- chung (für GWÜ geeignet)	84,0	Fremdlabor
05358048	Gemeinde Niederzier	218229010	Niederzier	Betreibermessstellen (für GWÜ geeignet)	52,0	Fremdlabor
05358048	Gemeinde Niederzier	218229513	Niederzier	Betreibermessstellen (für GWÜ geeignet)	65,9	Fremdlabor
05358052	Gemeinde Nörvenich	010200691	ISWEILER NR.290	Grundwassergüte- messstellen des Landes	81,3	LANUV
05358052	Gemeinde Nörvenich	010308430	STRABAG,ESCHW-FE P1	Emittentenmessstel- len, Anlagenüberwa- chung	156,5	Fremdlabor
05358052	Gemeinde Nörvenich	219480618	Eschw.Ue.F	Betreibermessstellen (für GWÜ geeignet)	65,4	Fremdlabor
05358052	Gemeinde Nörvenich	219483218	Nörvenich 2	Betreibermessstellen (für GWÜ geeignet)	170,2	Fremdlabor
05358052	Gemeinde Nörvenich	011004824	Rommelsheim Zus 660	Betreibermessstellen (für GWÜ geeignet)	68,1	Fremdlabor
05358056	Gemeinde Titz	219282419	Bettenhoven 2	Betreibermessstellen (für GWÜ geeignet)	103,0	Fremdlabor
05358060	Gemeinde Vettweiß	210404528	Lüxheim Br. 3	Rohwasserüberwa- chung (für GWÜ geeignet)	75,1	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05358060	Gemeinde Vettweiß	210404530	Lüxheim Br. 4	Rohwasserüberwa- chung (für GWÜ geeignet)	65,9	Fremdlabor
05358060	Gemeinde Vettweiß	210404541	Lüxheim Br. 5	Rohwasserüberwa- chung (für GWÜ geeignet)	66,7	Fremdlabor
05358060	Gemeinde Vettweiß	210404553	Lüxheim Br. 6	Rohwasserüberwa- chung (für GWÜ geeignet)	94,1	Fremdlabor
05358060	Gemeinde Vettweiß	210404668	Lüxheim P 13	Betreibermessstellen (für GWÜ geeignet)	55,7	Fremdlabor
05358060	Gemeinde Vettweiß	210407141	Lüxheim Bru. 2	Rohwasserüberwa- chung (für GWÜ geeignet)	70,7	Fremdlabor
05358060	Gemeinde Vettweiß	219481611	Lüxheim 4	Betreibermessstellen (für GWÜ geeignet)	61,9	Fremdlabor
05358060	Gemeinde Vettweiß	219971614	Sievernich	Betreibermessstellen (für GWÜ geeignet)	104,8	Fremdlabor
05358060	Gemeinde Vettweiß	219974214	Kettenheim	Betreibermessstellen (für GWÜ geeignet)	91,9	Fremdlabor
05358060	Gemeinde Vettweiß	011005154	Jakobwülles Zus693	Betreibermessstellen (für GWÜ geeignet)	84,9	LANUV
05362020	Stadt Erftstadt	076564113	HAG KNAPS 8836 Neu	Emittentenmessstel- len, Anlagenüberwa- chung	68,5	Fremdlabor
05362020	Stadt Erftstadt	279481317	Mueddersh3	Betreibermessstellen (für GWÜ geeignet)	91,0	Fremdlabor
05362020	Stadt Erftstadt	279470617	Br.Hoverhf	Betreibermessstellen (für GWÜ geeignet)	90,6	Fremdlabor
05362020	Stadt Erftstadt	279486510	Niederberg 3	Betreibermessstellen (für GWÜ geeignet)	57,0	Fremdlabor
05362032	Stadt Kerpen	273400526	Stollenwerk 2	Betreibermessstellen (für GWÜ geeignet)	69,8	Fremdlabor
05362032	Stadt Kerpen	279480015	Blatzheim2	Betreibermessstellen (für GWÜ geeignet)	78,2	Fremdlabor
05362032	Stadt Kerpen	279480118	Buir	Betreibermessstellen (für GWÜ geeignet)	98,1	Fremdlabor
05362032	Stadt Kerpen	279483818	Buir 4	Betreibermessstellen (für GWÜ geeignet)	61,9	Fremdlabor
05362036	Stadt Pulheim	073540810	ESCH 585	Betreibermessstellen (für GWÜ geeignet)	71,1	Fremdlabor
05362040	Stadt Wes- seling	076503410	ROW WESSEL M15 R	Grundwassergüte- messstellen des Landes	86,2	LANUV
05362040	Stadt Wes- seling	076638509	CORA EB 1 N	Betreibermessstellen (für GWÜ geeignet)	95,1	Fremdlabor
05362040	Stadt Wes- seling	070168817	LGD DICKOPSHOF	Grundwassergüte- messstellen des Landes	115,8	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05366004	Stadt Bad Münstereifel	010307217	Arloff P 5.1	Betreibermessstellen (für GWÜ geeignet)	110,1	LANUV
05366004	Stadt Bad Münstereifel	010408125	Nöthen Br. 1	Rohwasserüberwa- chung (für GWÜ geeignet)	51,7	LANUV
05366008	Gemeinde Blankenheim	010409919	Behnenbachquelle	Grundwassergüte- messstellen des Landes	60,6	LANUV
05366016	Stadt Euskir- chen	219972011	Owichter.	Betreibermessstellen (für GWÜ geeignet)	132,6	Fremdlabor
05366016	Stadt Euskir- chen	010306493	P+L Pufferbecken A	Emittentenmessstel- len, Anlagenüberwa- chung	140,5	Fremdlabor
05366016	Stadt Euskir- chen	016001606	Br. Heres	Emittentenmessstel- len, Anlagenüberwa- chung	98,6	LANUV
05366016	Stadt Euskir- chen	219482214	Dom-Esch	Betreibermessstellen (für GWÜ geeignet)	130,8	Fremdlabor
05366016	Stadt Euskir- chen	219482810	Dom-Esch 3	Emittentenmessstel- len, Anlagenüberwa- chung	91,9	Fremdlabor
05366016	Stadt Euskir- chen	219486219	Kessenich 3	Betreibermessstellen (für GWÜ geeignet)	81,3	Fremdlabor
05366024	Gemeinde Kall	010409038	Schevenquelle	Grundwassergüte- messstellen des Landes	53,0	LANUV
05366028	Stadt Mecher- nich	010408113	WW Satzvey, Br. 2	Rohwasserüberwa- chung (für GWÜ geeignet)	52,2	Fremdlabor
05366028	Stadt Mecher- nich	010409683	Rißdorfquelle	Grundwassergüte- messstellen des Landes	79,6	LANUV
05366028	Stadt Mecher- nich	011007023	Vussem Zus	Grundwassergüte- messstellen des Landes	70,7	LANUV
05366028	Stadt Mecher- nich	010409300	HAUSERB. STOLLEN	Rohwasserüberwa- chung (für GWÜ geeignet)	51,3	Fremdlabor
05366028	Stadt Mecher- nich	010203230	GLEHN FLACH	Grundwassergüte- messstellen des Landes	79,6	LANUV
05366028	Stadt Mecher- nich	010409105	Quelle Dützbenden	Rohwasserüberwa- chung (für GWÜ geeignet)	69,4	Fremdlabor
05366028	Stadt Mecher- nich	010409117	ESELSBACHQUELLE	Rohwasserüberwa- chung (für GWÜ geeignet)	60,6	Fremdlabor
05366028	Stadt Mecher- nich	010409129	Mehlenb. Quelle 2D	Rohwasserüberwa- chung (für GWÜ geeignet)	79,1	Fremdlabor
05366028	Stadt Mecher- nich	010409191	Mehlenbach Quelle 1	Rohwasserüberwa- chung (für GWÜ geeignet)	71,2	Fremdlabor
05366028	Stadt Mecher- nich	010409221	Mehlenb. Quelle 2C	Rohwasserüberwa- chung (für GWÜ geeignet)	67,2	Fremdlabor
05366036	Stadt Schleiden	010410077	Heilsteinquelle	Grundwassergüte- messstellen des Landes	84,0	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05366040	Gemeinde Weilerswist	219483619	Horchheim	Betreibermessstellen (für GWÜ geeignet)	83,1	Fremdlabor
05366044	Stadt Zülpich	010409415	Aldericusquelle	Grundwassergüte- messstellen des Landes	72,0	LANUV
05366044	Stadt Zülpich	219972217	Fuessen. 3	Betreibermessstellen (für GWÜ geeignet)	84,9	Fremdlabor
05366044	Stadt Zülpich	215988711	Duerschev	Betreibermessstellen (für GWÜ geeignet)	77,6	Fremdlabor
05366044	Stadt Zülpich	219977318	Buervenich	Betreibermessstellen (für GWÜ geeignet)	139,7	Fremdlabor
05370004	Stadt Erkelenz	010201415	Matzerath Br. 201	Rohwasserüberwa- chung (für GWÜ geeignet)	81,8	LANUV
05370004	Stadt Erkelenz	010201282	OERATH	Grundwassergüte- messstellen des Landes	57,0	LANUV
05370004	Stadt Erkelenz	010201531	LENTHOLT	Grundwassergüte- messstellen des Landes	137,0	LANUV
05370004	Stadt Erkelenz	219081712	Grambusch	Betreibermessstellen (für GWÜ geeignet)	52,2	Fremdlabor
05370004	Stadt Erkelenz	010305579	RBW Kückhoven P3.1	Betreibermessstellen (für GWÜ geeignet)	55,7	Fremdlabor
05370004	Stadt Erkelenz	010305646	RBW,Kiesw.Kückh.P2	Emittentenmessstel- len, Anlagenüberwa- chung	151,2	Fremdlabor
05370008	Gemeinde Gangelt	010305660	Abgr.Breberen,P1	Emittentenmessstel- len, Anlagenüberwa- chung	113,6	Fremdlabor
05370008	Gemeinde Gangelt	010305671	Abgr.Breberen,P2	Emittentenmessstel- len, Anlagenüberwa- chung	64,5	Fremdlabor
05370008	Gemeinde Gangelt	010305683	Abgr.Breberen,P3	Emittentenmessstel- len, Anlagenüberwa- chung	67,6	Fremdlabor
05370008	Gemeinde Gangelt	010306225	Abgr.Breberen,P4	Emittentenmessstel- len, Anlagenüberwa- chung	91,9	Fremdlabor
05370008	Gemeinde Gangelt	219608210	Schierwald	Emittentenmessstel- len, Anlagenüberwa- chung	114,9	Fremdlabor
05370012	Stadt Geilenkir- chen	210403317	WWk Gangelt Gp 2	Betreibermessstellen (für GWÜ geeignet)	74,7	Fremdlabor
05370012	Stadt Geilenkir- chen	210406770	Teveren	Betreibermessstellen (für GWÜ geeignet)	108,7	Fremdlabor
05370012	Stadt Geilenkir- chen	219603819	Gillrath 6	Betreibermessstellen (für GWÜ geeignet)	78,2	Fremdlabor
05370012	Stadt Geilenkir- chen	219607011	Teveren 1	Emittentenmessstel- len, Anlagenüberwa- chung	113,6	Fremdlabor
05370012	Stadt Geilenkir- chen	010303960	Martens Himberg B1	Betreibermessstellen (für GWÜ geeignet)	69,8	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05370012	Stadt Geilenkir- chen	010303972	Martens Himberg B2	Betreibermessstellen (für GWÜ geeignet)	133,9	Fremdlabor
05370012	Stadt Geilenkir- chen	010308337	Fa.Gottschalk Br.1	Emittentenmessstel- len, Anlagenüberwa- chung	51,7	Fremdlabor
05370012	Stadt Geilenkir- chen	010308349	Fa.Gottschalk Br.2	Emittentenmessstel- len, Anlagenüberwa- chung	64,1	Fremdlabor
05370012	Stadt Geilenkir- chen	010308350	Fa.Gottschalk Br.3	Emittentenmessstel- len, Anlagenüberwa- chung	116,7	Fremdlabor
05370012	Stadt Geilenkir- chen	010308362	Fa. Gottschalk Br.4	Emittentenmessstel- len, Anlagenüberwa- chung	71,2	Fremdlabor
05370012	Stadt Geilenkir- chen	219600910	Waurichen	Betreibermessstellen (für GWÜ geeignet)	72,0	Fremdlabor
05370016	Stadt Heins- berg	010308209	LAPRELL,WaldenrWeg	Emittentenmessstel- len, Anlagenüberwa- chung	110,1	Fremdlabor
05370016	Stadt Heins- berg	010403048	Kirchhoven PB 13	Rohwasserüberwa- chung (für GWÜ geeignet)	68,5	LANUV
05370016	Stadt Heins- berg	219671011	Effeld 2	Betreibermessstellen (für GWÜ geeignet)	93,3	Fremdlabor
05370016	Stadt Heins- berg	219671114	Selsten	Betreibermessstellen (für GWÜ geeignet)	92,8	Fremdlabor
05370016	Stadt Heins- berg	010306470	Himmerich 1, Tor	Betreibermessstellen (für GWÜ geeignet)	138,3	Fremdlabor
05370016	Stadt Heins- berg	010306481	Himmerich 2, Feld	Emittentenmessstel- len, Anlagenüberwa- chung	50,4	Fremdlabor
05370016	Stadt Heins- berg	010308052	Platzbecker P 2	Emittentenmessstel- len, Anlagenüberwa- chung	119,8	Fremdlabor
05370016	Stadt Heins- berg	010308570	Platzbecker P 1	Betreibermessstellen (für GWÜ geeignet)	95,0	Fremdlabor
05370016	Stadt Heins- berg	010308581	Platzbecker P 3	Betreibermessstellen (für GWÜ geeignet)	77,4	Fremdlabor
05370016	Stadt Heins- berg	016000997	IPO P5 Süd neu	Betreibermessstellen (für GWÜ geeignet)	103,4	LANUV
05370016	Stadt Heins- berg	218657810	Uetterath	Betreibermessstellen (für GWÜ geeignet)	80,9	Fremdlabor
05370016	Stadt Heins- berg	219604812	Randerath	Betreibermessstellen (für GWÜ geeignet)	141,0	Fremdlabor
05370020	Stadt Hückel- hoven	011002268	Brachelen Sp Pl	Grundwassergüte- messstellen des Landes	53,9	LANUV
05370024	Gemeinde Selfkant	219602712	Havert	Betreibermessstellen (für GWÜ geeignet)	180,8	Fremdlabor
05370024	Gemeinde Selfkant	219602815	Schalbruch	Betreibermessstellen (für GWÜ geeignet)	234,7	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05370024	Gemeinde Selfkant	219603110	Hillensber	Betreibermessstellen (für GWÜ geeignet)	129,1	Fremdlabor
05370028	Stadt Übach- Palenberg	010201518	SCHERPENSEEL	Grundwassergüte- messstellen des Landes	72,5	LANUV
05370032	Gemeinde Waldfeucht	010408617	Waldfeucht Br. 5	Rohwasserüberwa- chung (für GWÜ geeignet)	59,7	Fremdlabor
05370032	Gemeinde Waldfeucht	219600818	Bocket 4	Betreibermessstellen (für GWÜ geeignet)	69,8	Fremdlabor
05370036	Stadt Wassen- berg	010202821	Orsbeck	Grundwassergüte- messstellen des Landes	145,9	LANUV
05370036	Stadt Wassen- berg	010407522	Wassenberg Br. 503	Rohwasserüberwa- chung (für GWÜ geeignet)	66,7	Fremdlabor
05370040	Stadt Wegberg	010201312	Arsbeck Bussardweg	Grundwassergüte- messstellen des Landes	107,0	LANUV
05370040	Stadt Wegberg	010407492	Beeck Br. 302	Rohwasserüberwa- chung (für GWÜ geeignet)	57,5	Fremdlabor
05370040	Stadt Wegberg	010407649	UEVEKOVEN BR. 101	Rohwasserüberwa- chung (für GWÜ geeignet)	95,5	Fremdlabor
05370040	Stadt Wegberg	010407650	UEVEKOVEN BR. 102	Rohwasserüberwa- chung (für GWÜ geeignet)	82,6	Fremdlabor
05370040	Stadt Wegberg	010407662	UEVEKOVEN BR. 103	Rohwasserüberwa- chung (für GWÜ geeignet)	53,5	Fremdlabor
05370040	Stadt Wegberg	218091229	Thomasbruch	Betreibermessstellen (für GWÜ geeignet)	93,5	Fremdlabor
05370040	Stadt Wegberg	218091321	Thomasbruch	Betreibermessstellen (für GWÜ geeignet)	55,7	Fremdlabor
05370040	Stadt Wegberg	218148719	Tueschenbroich	Betreibermessstellen (für GWÜ geeignet)	60,9	Fremdlabor
05370040	Stadt Wegberg	218149013	Tueschenbroich	Betreibermessstellen (für GWÜ geeignet)	213,7	Fremdlabor
05370040	Stadt Wegberg	218157113	Eichhof	Betreibermessstellen (für GWÜ geeignet)	70,5	Fremdlabor
05370040	Stadt Wegberg	218173519	Tueschenbroich	Betreibermessstellen (für GWÜ geeignet)	58,8	Fremdlabor
05370040	Stadt Wegberg	218173611	Tueschenbroich	Betreibermessstellen (für GWÜ geeignet)	81,9	Fremdlabor
05370040	Stadt Wegberg	218178610	Wegberg	Betreibermessstellen (für GWÜ geeignet)	87,8	Fremdlabor
05370040	Stadt Wegberg	218178621	Wegberg	Betreibermessstellen (für GWÜ geeignet)	50,2	Fremdlabor
05370040	Stadt Wegberg	218178724	Wegberg	Betreibermessstellen (für GWÜ geeignet)	51,3	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05370040	Stadt Wegberg	218178815	Busch	Betreibermessstellen (für GWÜ geeignet)	99,8	Fremdlabor
05370040	Stadt Wegberg	218178918	Busch	Betreibermessstellen (für GWÜ geeignet)	103,8	Fremdlabor
05370040	Stadt Wegberg	218179017	Busch	Betreibermessstellen (für GWÜ geeignet)	87,0	Fremdlabor
05370040	Stadt Wegberg	218179110	Hau	Betreibermessstellen (für GWÜ geeignet)	137,8	Fremdlabor
05370040	Stadt Wegberg	218179212	Harbeck	Betreibermessstellen (für GWÜ geeignet)	159,7	Fremdlabor
05370040	Stadt Wegberg	218180214	Watern	Betreibermessstellen (für GWÜ geeignet)	116,8	Fremdlabor
05370040	Stadt Wegberg	218194614	Eichhof	Betreibermessstellen (für GWÜ geeignet)	58,1	Fremdlabor
05370040	Stadt Wegberg	218195710	Wegberg	Betreibermessstellen (für GWÜ geeignet)	55,8	Fremdlabor
05370040	Stadt Wegberg	218196910	Buscher Bruch	Betreibermessstellen (für GWÜ geeignet)	52,8	Fremdlabor
05370040	Stadt Wegberg	219082212	Venheyde	Betreibermessstellen (für GWÜ geeignet)	153,8	Fremdlabor
05370040	Stadt Wegberg	219086114	Herwath	Betreibermessstellen (für GWÜ geeignet)	67,6	Fremdlabor
05370040	Stadt Wegberg	219087118	Merbecker Busch	Betreibermessstellen (für GWÜ geeignet)	114,9	Fremdlabor
05378016	Stadt Leichlingen (Rhld.)	076734985	PGHM.WELTERSB. SS	Grundwassergüte- messstellen des Landes	67,6	LANUV
05382004	Gemeinde Alfter	070284611	LGD Alfter ALTABL.	Grundwassergüte- messstellen des Landes	85,3	LANUV
05382012	Stadt Bornheim	070201213	LGD Widdig GEW 132	Betreibermessstellen (für GWÜ geeignet)	68,2	Fremdlabor
05382012	Stadt Bornheim	070203416	LGD BORNHEIM B4/99	Grundwassergüte- messstellen des Landes	148,5	LANUV
05382012	Stadt Bornheim	073549319	WBV WESSELING 21	Betreibermessstellen (für GWÜ geeignet)	134,2	Fremdlabor
05382012	Stadt Bornheim	077009915	WBV WESSELING 051	Betreibermessstellen (für GWÜ geeignet)	55,2	Fremdlabor
05382012	Stadt Bornheim	070203210	LGD BORNHEIM B2/99	Grundwassergüte- messstellen des Landes	117,1	LANUV
05382012	Stadt Bornheim	070203817	LGD Sechtem Plantag	Grundwassergüte- messstellen des Landes	196,2	LANUV
05382024	Stadt Königs- winter	073779817	WBV THOMASBERG P	Betreibermessstellen (für GWÜ geeignet)	70,3	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05382032	Stadt Mecken- heim	279481020	Meckenheim 2	Betreibermessstellen (für GWÜ geeignet)	70,7	Fremdlabor
05382048	Stadt Rhein- bach	279479610	Flerzheim	Betreibermessstellen (für GWÜ geeignet)	95,5	Fremdlabor
05382064	Gemeinde Swisttal	073548807	WW Ludendorf Br. 2	Rohwasserüberwa- chung (für GWÜ geeignet)	57,9	Fremdlabor
05382064	Gemeinde Swisttal	276403710	Miel 6	Emittentenmessstel- len, Anlagenüberwa- chung	53,0	Fremdlabor
05382064	Gemeinde Swisttal	276403812	Miel 7	Emittentenmessstel- len, Anlagenüberwa- chung	59,2	Fremdlabor
05382072	Gemeinde Wachtberg	071200307	FRITZDORF ZBR 491	Betreibermessstellen (für GWÜ geeignet)	129,1	LANUV
05515000	Stadt Münster	114001649	UWMS/164 Kannoniers	Betreibermessstellen (für GWÜ geeignet)	53,0	LANUV
05515000	Stadt Münster	114001730	UWMS/173 Gasselst.	Betreibermessstellen (für GWÜ geeignet)	55,3	LANUV
05554008	Stadt Bocholt	060230058	BO/4 A -LOWICK-	Grundwassergüte- messstellen des Landes	92,8	LANUV
05554008	Stadt Bocholt	060230265	BO/26 -SPORK-	Grundwassergüte- messstellen des Landes	139,2	LANUV
05554008	Stadt Bocholt	060230290	BO/29-GESINKHOOK-	Grundwassergüte- messstellen des Landes	77,4	LANUV
05554012	Stadt Borken	060230289	BO/28- RHEDEBRUEGGE-	Grundwassergüte- messstellen des Landes	57,0	LANUV
05554012	Stadt Borken	060230113	BO/11 BORKEN- WIRTHE	Grundwassergüte- messstellen des Landes	151,2	LANUV
05554012	Stadt Borken	060220041	HS/4 GRUETLOHN	Grundwassergüte- messstellen des Landes	109,2	LANUV
05554012	Stadt Borken	060220594	HS/59 -BORKEN-	Grundwassergüte- messstellen des Landes	85,7	LANUV
05554016	Stadt Gescher	060220867	HS/86 -TUNGERLOH-	Grundwassergüte- messstellen des Landes	134,8	LANUV
05554020	Stadt Gronau (Westf.)	060240040	AH/4 -Gronau-	Grundwassergüte- messstellen des Landes	130,8	LANUV
05554028	Gemeinde Heiden	060220016	HS/1 -HEIDEN-	Grundwassergüte- messstellen des Landes	58,3	LANUV
05554028	Gemeinde Heiden	060220028	HS/2 -NORDICK-	Grundwassergüte- messstellen des Landes	59,2	LANUV
05554056	Stadt Stadtlohn	060240337	AH/33 -WENDFELD-	Grundwassergüte- messstellen des Landes	155,1	LANUV
05554064	Gemeinde Velen	060240295	AH/29 -HOLTHAUSEN-	Grundwassergüte- messstellen des Landes	52,6	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05554068	Stadt Vreden	060240428	AH/42-ZWILLBROCK-	Grundwassergüte- messstellen des Landes	57,5	LANUV
05558004	Gemeinde Ascheberg	110250072	BERGB 7-NORDICK-	Betreibermessstellen (für GWÜ geeignet)	55,7	LANUV
05558008	Stadt Billerbeck	110310019	BOMBECK 01	Grundwassergüte- messstellen des Landes	85,3	LANUV
05558008	Stadt Billerbeck	110040272	IV/27 Holthausen	Grundwassergüte- messstellen des Landes	66,3	LANUV
05558012	Stadt Coesfeld	110220791	HS/79 -FLAMSCHEN-	Grundwassergüte- messstellen des Landes	222,8	LANUV
05558012	Stadt Coesfeld	110220808	HS/80 COE.FLAMSCHEN	Betreibermessstellen (für GWÜ geeignet)	59,7	LANUV
05558012	Stadt Coesfeld	110220390	HS/39 -COE. GOXEL-	Betreibermessstellen (für GWÜ geeignet)	76,5	LANUV
05558016	Stadt Dülmen	110220109	HS/10 MERFELD	Grundwassergüte- messstellen des Landes	100,3	LANUV
05558024	Stadt Lüdin- ghausen	110210190	ST.GEB/19 Leversum	Grundwassergüte- messstellen des Landes	186,1	LANUV
05558032	Gemeinde Nottuln	119010999	Steverquelle	Grundwassergüte- messstellen des Landes	50,4	LANUV
05562012	Stadt Dorsten	060070109	HS 18	Grundwassergüte- messstellen des Landes	85,7	LANUV
05562016	Stadt Haltern	060083256	HS/74 -LOCHTRUP-	Grundwassergüte- messstellen des Landes	110,5	LANUV
05562016	Stadt Haltern	060092221	HS/11 -SYTHEN-	Grundwassergüte- messstellen des Landes	76,9	LANUV
05566008	Stadt Emsdet- ten	110050125	V/12 -ISENDORF-	Grundwassergüte- messstellen des Landes	114,0	LANUV
05566008	Stadt Emsdet- ten	113810362	WW.Ahlintel-VFP.036	Betreibermessstellen (für GWÜ geeignet)	159,7	Fremdlabor
05566008	Stadt Emsdet- ten	118722815	WW.AHLINTEL-2- HO02	Rohwasserüberwa- chung (für GWÜ geeignet)	64,9	Fremdlabor
05566012	Stadt Greven	110040170	IV/17- WESTLADBERGEN	Grundwassergüte- messstellen des Landes	82,2	LANUV
05566012	Stadt Greven	110070148	VII/14-WESTERODE-	Grundwassergüte- messstellen des Landes	81,8	LANUV
05566016	Stadt Hörstel	110200160	TE / 16 -UTHUISEN-	Grundwassergüte- messstellen des Landes	370,0	LANUV
05566016	Stadt Hörstel	110200070	TE/7 -RIESENBECK-	Grundwassergüte- messstellen des Landes	55,3	LANUV
05566016	Stadt Hörstel	110200081	TE/8 -BEVERGERN-	Betreibermessstellen (für GWÜ geeignet)	92,4	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05566020	Gemeinde Hopsten	110200214	TE / 21 -SCHALE-	Grundwassergüte- messstellen des Landes	85,3	LANUV
05566024	Stadt Horstmar	119809989	Leerbachquelle	Rohwasserüberwa- chung (für GWÜ geeignet)	52,2	LANUV
05566028	Stadt Ibbenbü- ren	110200251	TE/25 IBBENBUEREN	Betreibermessstellen (für GWÜ geeignet)	218,3	LANUV
05566028	Stadt Ibbenbü- ren	110200457	TE/45 Püsselbüren	Grundwassergüte- messstellen des Landes	57,0	LANUV
05566036	Gemeinde Laer	110320037	LAER / E	Betreibermessstellen (für GWÜ geeignet)	52,6	LANUV
05566040	Stadt Lengerich	110200408	TE/40 Wechte	Grundwassergüte- messstellen des Landes	78,7	LANUV
05566060	Gemeinde Neuenkirchen	110290045	RH/4 SUTRUM	Grundwassergüte- messstellen des Landes	94,1	LANUV
05566060	Gemeinde Neuenkirchen	118611264	WW.OFFLUM-VF126	Betreibermessstellen (für GWÜ geeignet)	85,9	Fremdlabor
05566060	Gemeinde Neuenkirchen	110280015	NK/1 NEUENKIR- CHEN_T	Grundwassergüte- messstellen des Landes	117,6	LANUV
05566060	Gemeinde Neuenkirchen	110280027	NK/2-NEUENKIRCHEN S	Grundwassergüte- messstellen des Landes	89,3	LANUV
05566076	Stadt Rheine	110290010	RH/1 SALZBERGEN	Grundwassergüte- messstellen des Landes	104,8	LANUV
05566076	Stadt Rheine	110200123	TE/12 -RODDE-	Grundwassergüte- messstellen des Landes	108,3	LANUV
05566080	Gemeinde Saerbeck	110040156	IV/15 -MIDDENDORF-	Grundwassergüte- messstellen des Landes	69,0	LANUV
05566080	Gemeinde Saerbeck	117506011	DEP. WOLTERS BR. 1	Emittentenmessstel- len, Anlagenüberwa- chung	77,4	LANUV
05566088	Stadt Tecklen- burg	118052056	W.BROCHTERBECK- VK05	Rohwasserüberwa- chung (für GWÜ geeignet)	72,9	Fremdlabor
05566092	Gemeinde Westerkappeln	110200433	TE/43_Metten	Grundwassergüte- messstellen des Landes	94,1	LANUV
05566092	Gemeinde Westerkappeln	110200380	TE/38 LOTTE DÜTE	Grundwassergüte- messstellen des Landes	76,5	LANUV
05570016	Stadt Dren- steinfurt	110250023	BERGB.2- EICKENDORF-	Betreibermessstellen (für GWÜ geeignet)	68,5	LANUV
05570016	Stadt Dren- steinfurt	110250059	BERGB.5-MERSCH-	Betreibermessstellen (für GWÜ geeignet)	178,6	LANUV
05570016	Stadt Dren- steinfurt	110250138	BERGB.13-AMEKE-	Betreibermessstellen (für GWÜ geeignet)	71,6	LANUV
05570032	Gemeinde Ostbevern	110040200	IV/20 -OSTBEVERN-	Grundwassergüte- messstellen des Landes	127,3	LANUV

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05570036	Stadt Sassen- berg	110060076	VI/7 -SASSENBERG-	Grundwassergüte- messstellen des Landes	59,7	LANUV
05570036	Stadt Sassen- berg	118886101	WW.VOHR-DACK- VFP110	Betreibermessstellen (für GWÜ geeignet)	71,9	Fremdlabor
05570036	Stadt Sassen- berg	118887385	WW.VOHR-DACK- VFP238	Betreibermessstellen (für GWÜ geeignet)	129,8	Fremdlabor
05570036	Stadt Sassen- berg	118887944	WW.VOHR-DACK- VFP294	Betreibermessstellen (für GWÜ geeignet)	112,8	Fremdlabor
05570040	Stadt Senden- horst	110070094	VII / 9 -ALBERSLOH-	Grundwassergüte- messstellen des Landes	135,7	LANUV
05570052	Stadt Waren- dorf	110060106	VI / 10 VELSEN	Grundwassergüte- messstellen des Landes	68,1	LANUV
05570052	Stadt Waren- dorf	110060090	VI/9 GROEBLINGEN	Grundwassergüte- messstellen des Landes	121,6	LANUV
05711000	Stadt Bielefeld	020104054	205F - 94/4.1 LGD	Grundwassergüte- messstellen des Landes	57,5	LANUV
05711000	Stadt Bielefeld	026540174	178- 3,0m ML	Grundwassergüte- messstellen des Landes	188,7	LANUV
05754008	Stadt Gütersloh	021000347	630 LGD	Grundwassergüte- messstellen des Landes	84,0	LANUV
05754008	Stadt Gütersloh	023087146	141 Spexard	Betreibermessstellen (für GWÜ geeignet)	59,4	Fremdlabor
05754008	Stadt Gütersloh	026541129	769- 4,0m ML	Grundwassergüte- messstellen des Landes	84,0	LANUV
05754008	Stadt Gütersloh	026541130	769- 5,5m ML	Grundwassergüte- messstellen des Landes	92,8	LANUV
05754008	Stadt Gütersloh	026541142	769- 7,0m ML	Grundwassergüte- messstellen des Landes	97,2	LANUV
05754008	Stadt Gütersloh	026549062	201- 8,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	85,0	Fremdlabor
05754008	Stadt Gütersloh	026549074	201-10,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	79,9	Fremdlabor
05754008	Stadt Gütersloh	026549086	201-14,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	66,7	Fremdlabor
05754008	Stadt Gütersloh	026549207	206-12,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	78,4	Fremdlabor
05754008	Stadt Gütersloh	026549311	210-4,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	111,8	Fremdlabor
05754008	Stadt Gütersloh	026549323	210-7,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	102,8	Fremdlabor
05754008	Stadt Gütersloh	026549335	210-9,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	102,8	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05754008	Stadt Gütersloh	026549347	210-11,0m ML SXD	Betreibermessstellen (für GWÜ geeignet)	91,4	Fremdlabor
05754008	Stadt Gütersloh	026550556	RH 3-6,0m ML RFO	Betreibermessstellen (für GWÜ geeignet)	79,6	Fremdlabor
05754008	Stadt Gütersloh	026550568	RH 3-7,0m ML RFO	Betreibermessstellen (für GWÜ geeignet)	68,4	Fremdlabor
05754008	Stadt Gütersloh	026550570	RH 3-9,0m ML RFO	Betreibermessstellen (für GWÜ geeignet)	149,8	Fremdlabor
05754008	Stadt Gütersloh	026550581	RH 3-11,0m ML RFO	Betreibermessstellen (für GWÜ geeignet)	113,8	Fremdlabor
05754012	Stadt Halle (Westf.)	021692488	GM 5 (alt GM6) Voll	Betreibermessstellen (für GWÜ geeignet)	75,1	Fremdlabor
05754012	Stadt Halle (Westf.)	025101948	B5 MD Kuenseb.	Emittentenmessstel- len, Anlagenüberwa- chung	196,2	Fremdlabor
05754012	Stadt Halle (Westf.)	025102242	B13 MD Kuenseb.	Emittentenmessstel- len, Anlagenüberwa- chung	360,7	Fremdlabor
05754012	Stadt Halle (Westf.)	025102280	B30 MD Kuenseb.	Emittentenmessstel- len, Anlagenüberwa- chung	116,7	Fremdlabor
05754016	Stadt Harse- winkel	020103062	III/6.2 LGD	Grundwassergüte- messstellen des Landes	163,5	LANUV
05754016	Stadt Harse- winkel	020780989	68 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	87,9	Fremdlabor
05754016	Stadt Harse- winkel	020782834	84 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	219,7	Fremdlabor
05754016	Stadt Harse- winkel	020782846	85 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	109,8	Fremdlabor
05754016	Stadt Harse- winkel	020782871	88 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	109,8	Fremdlabor
05754016	Stadt Harse- winkel	020782883	89 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	159,7	Fremdlabor
05754016	Stadt Harse- winkel	020782895	90 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	61,9	Fremdlabor
05754016	Stadt Harse- winkel	020782901	91 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	159,7	Fremdlabor
05754016	Stadt Harse- winkel	020785290	103 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	60,9	Fremdlabor
05754016	Stadt Harse- winkel	020785331	107 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	62,9	Fremdlabor
05754016	Stadt Harse- winkel	020789117	V 2 Harsewinkel	Betreibermessstellen (für GWÜ geeignet)	51,9	Fremdlabor
05754016	Stadt Harse- winkel	021691848	T1 Topmoell Harsew	Betreibermessstellen (für GWÜ geeignet)	86,2	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05754020	Gemeinde Herzebrock	023095222	221 ML_4,5 Quenhorn	Betreibermessstellen (für GWÜ geeignet)	89,9	Fremdlabor
05754020	Gemeinde Herzebrock	023095234	221 ML_5,5 Quenhorn	Betreibermessstellen (für GWÜ geeignet)	79,8	Fremdlabor
05754020	Gemeinde Herzebrock	023095246	221 ML_9,5 Quenhorn	Betreibermessstellen (für GWÜ geeignet)	72,3	Fremdlabor
05754020	Gemeinde Herzebrock	023095258	221 ML_11,5 Quenhor	Betreibermessstellen (für GWÜ geeignet)	71,4	Fremdlabor
05754020	Gemeinde Herzebrock	023095260	221 ML_14,5 Quenhor	Betreibermessstellen (für GWÜ geeignet)	72,5	Fremdlabor
05754020	Gemeinde Herzebrock	026549736	102- 6,7m ML QUE	Betreibermessstellen (für GWÜ geeignet)	115,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	023090870	84 Rhedaer Fo	Betreibermessstellen (für GWÜ geeignet)	77,4	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026491746	BR 4 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	68,2	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026491801	BR10 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	53,3	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026491953	BR25 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	52,3	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026491965	BR26 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	64,7	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026491989	BR28 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	92,2	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026492210	BR29 Rhedaer Forst	Rohwasserüberwa- chung (für GWÜ geeignet)	60,0	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026549931	7- 4,9m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	84,3	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026549943	7- 5,9m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	94,0	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026549980	8- 3,5m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	219,7	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026549992	8- 4,5m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	157,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550003	8- 7,5m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	139,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550015	8-10,5m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	116,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550027	8-12,5m ML SUDH	Betreibermessstellen (für GWÜ geeignet)	99,2	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550209	SP96-3,4m ML SUDH 2	Betreibermessstellen (für GWÜ geeignet)	140,8	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05754028	Stadt Rheda- Wiedenbrück	026550210	SP96-4,4m ML SUDH 2	Betreibermessstellen (für GWÜ geeignet)	158,7	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550222	SP96-6,4m ML SUDH 2	Betreibermessstellen (für GWÜ geeignet)	156,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550234	SP96-10,4mML SUDH 2	Betreibermessstellen (für GWÜ geeignet)	106,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550416	RH 1-5,5m ML RFO	Betreibermessstellen (für GWÜ geeignet)	81,3	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550428	RH 1-6,5m ML RFO	Betreibermessstellen (für GWÜ geeignet)	69,6	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550430	RH 1-8,5m ML RHO	Betreibermessstellen (für GWÜ geeignet)	106,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550441	RH 1-10,5m ML RHO	Betreibermessstellen (für GWÜ geeignet)	106,8	Fremdlabor
05754028	Stadt Rheda- Wiedenbrück	026550453	RH 1-12,5m ML RFO	Betreibermessstellen (für GWÜ geeignet)	58,8	Fremdlabor
05754036	Gemeinde Schloß Holte- Stukenbrock	026001573	3 Brink	Betreibermessstellen (für GWÜ geeignet)	89,7	Fremdlabor
05754040	Gemeinde Steinhagen	021001765	768 T LGD	Grundwassergüte- messstellen des Landes	79,6	LANUV
05754044	Stadt Verl	020101120	I/8C ML LGD	Grundwassergüte- messstellen des Landes	198,9	LANUV
05754044	Stadt Verl	026540514	I/8C-4,0m ML LGD	Grundwassergüte- messstellen des Landes	110,5	LANUV
05754044	Stadt Verl	026540526	I/8C-6,0m ML LGD	Grundwassergüte- messstellen des Landes	61,9	LANUV
05754048	Stadt Versmold	020104303	VI/4 LGD	Grundwassergüte- messstellen des Landes	75,1	LANUV
05754048	Stadt Versmold	020104315	VI/5 LGD	Grundwassergüte- messstellen des Landes	128,2	LANUV
05754048	Stadt Versmold	021001730	602F A LGD	Grundwassergüte- messstellen des Landes	110,5	LANUV
05758004	Stadt Bünde	100761616	BB 1 BR BILLERKE	Rohwasserüberwa- chung (für GWÜ geeignet)	52,9	Fremdlabor
05762012	Stadt Borgen- treich	022520223	Bo4 Borgentreich	Grundwassergüte- messstellen des Landes	86,6	LANUV
05762024	Stadt Marien- münster	026504613	TB Voerden	Rohwasserüberwa- chung (für GWÜ geeignet)	51,9	Fremdlabor
05762036	Stadt Warburg	025100099	B 21 Warbg M7126	Emittentenmessstel- len, Anlagenüberwa- chung	95,8	Fremdlabor
05766008	Stadt Bad Salzuflen	100740522	HB 2 BR BEGATAL	Rohwasserüberwa- chung (für GWÜ geeignet)	53,9	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05766008	Stadt Bad Salzuflen	106530288	BS 1 ML -05,50 Nor	Grundwassergüte- messstellen des Landes	101,7	LANUV
05766008	Stadt Bad Salzuflen	106530318	BS 1 ML -13,00 NOR	Grundwassergüte- messstellen des Landes	70,7	LANUV
05766008	Stadt Bad Salzuflen	106505452	STOP2 BR STOPPEL	Rohwasserüberwa- chung (für GWÜ geeignet)	52,9	Fremdlabor
05766024	Gemeinde Dörentrup	106505026	HUMF1 BR HUMFELD	Rohwasserüberwa- chung (für GWÜ geeignet)	69,9	Fremdlabor
05766036	Gemeinde Kalletal	106506067	KHELL BR HELLBERG	Rohwasserüberwa- chung (für GWÜ geeignet)	58,9	Fremdlabor
05770012	Gemeinde Hille	100140087	SU 79 WG 9/SUEDH	Grundwassergüte- messstellen des Landes	81,3	LANUV
05770012	Gemeinde Hille	100707555	WR 5 BR ROTHEN- UFFN	Rohwasserüberwa- chung (für GWÜ geeignet)	64,9	Fremdlabor
05770024	Stadt Minden	100140749	WG 68 BARTLING	Grundwassergüte- messstellen des Landes	145,0	LANUV
05770028	Stadt Pe- tershagen	100135213	PH 18 GRO HEERSE	Grundwassergüte- messstellen des Landes	67,6	LANUV
05770028	Stadt Pe- tershagen	100135626	PH 25N OVENSTA- EDT	Grundwassergüte- messstellen des Landes	134,8	LANUV
05770028	Stadt Pe- tershagen	100135651	WF 1F OVENSTAEDT	Grundwassergüte- messstellen des Landes	312,9	LANUV
05770028	Stadt Pe- tershagen	100135031	PH1003M IM TIMPEN	Grundwassergüte- messstellen des Landes	68,5	LANUV
05770028	Stadt Pe- tershagen	100720330	PW 3 BR WIE- TERSHM	Rohwasserüberwa- chung (für GWÜ geeignet)	53,9	Fremdlabor
05770028	Stadt Pe- tershagen	100720353	PW 5 BR WIE- TERSHM	Rohwasserüberwa- chung (für GWÜ geeignet)	57,9	Fremdlabor
05770028	Stadt Pe- tershagen	100720912	PI 3 ILSE	Betreibermessstellen (für GWÜ geeignet)	122,9	Fremdlabor
05770028	Stadt Pe- tershagen	101630116	KA 1 KAENDLER	Betreibermessstellen (für GWÜ geeignet)	53,4	Fremdlabor
05770028	Stadt Pe- tershagen	101630256	LI 6/96 Lindhöpen	Betreibermessstellen (für GWÜ geeignet)	103,0	Fremdlabor
05770028	Stadt Pe- tershagen	101630270	LI 9 Lindhöpen	Betreibermessstellen (für GWÜ geeignet)	67,3	Fremdlabor
05770028	Stadt Pe- tershagen	101630591	WE 9 WESLING	Betreibermessstellen (für GWÜ geeignet)	64,1	Fremdlabor
05770028	Stadt Pe- tershagen	101631042	KL 4 KIES LAHDE	Betreibermessstellen (für GWÜ geeignet)	57,9	Fremdlabor
05770028	Stadt Pe- tershagen	101640330	WD 3 Windh-Doeh	Betreibermessstellen (für GWÜ geeignet)	59,2	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05770028	Stadt Pe- tershagen	101640341	WD 4 Windh-Doeh	Betreibermessstellen (für GWÜ geeignet)	69,4	Fremdlabor
05770028	Stadt Pe- tershagen	106530021	PHG43 -6,0m ML	Grundwassergüte- messstellen des Landes	84,0	LANUV
05770028	Stadt Pe- tershagen	106530033	PHG43 -8,0m ML	Grundwassergüte- messstellen des Landes	106,1	LANUV
05770028	Stadt Pe- tershagen	106530045	PHG43-10,0m ML	Grundwassergüte- messstellen des Landes	84,0	LANUV
05770028	Stadt Pe- tershagen	106530057	PHG43-12,0m ML	Grundwassergüte- messstellen des Landes	66,3	LANUV
05770028	Stadt Pe- tershagen	106530203	PH46N -5,0m ML	Grundwassergüte- messstellen des Landes	132,6	LANUV
05770028	Stadt Pe- tershagen	104004046	K 7.1 M SAD Münhg	Grundwassergüte- messstellen des Landes	60,1	LANUV
05770032	Stadt Porta Westfalica	100731478	MH1109 HUXHOEHE	Grundwassergüte- messstellen des Landes	50,4	LANUV
05770040	Stadt Rahden	100700512	WE 1 BR WEHE RAHDN	Rohwasserüberwa- chung (für GWÜ geeignet)	68,9	Fremdlabor
05770040	Stadt Rahden	100700524	WE 2B BR WEHE RAHDN	Rohwasserüberwa- chung (für GWÜ geeignet)	63,9	Fremdlabor
05770044	Gemeinde Stemwede	100140683	WG 62 BUTENBOHM	Grundwassergüte- messstellen des Landes	152,5	LANUV
05774020	Stadt Delbrück	023161346	34 Boker Heide	Betreibermessstellen (für GWÜ geeignet)	52,9	Fremdlabor
05774020	Stadt Delbrück	023161437	43 Boker Heide	Betreibermessstellen (für GWÜ geeignet)	127,8	Fremdlabor
05774020	Stadt Delbrück	023161814	81 Boker Heide	Betreibermessstellen (für GWÜ geeignet)	91,9	Fremdlabor
05774020	Stadt Delbrück	026531094	103- 2,0m ML OL	Grundwassergüte- messstellen des Landes	163,5	LANUV
05774020	Stadt Delbrück	026531100	103_ 4,0m MI OL	Grundwassergüte- messstellen des Landes	225,4	LANUV
05774020	Stadt Delbrück	026531112	103- 6,0m ML OL	Grundwassergüte- messstellen des Landes	190,1	LANUV
05774020	Stadt Delbrück	026163240	S 1 Schledde	Betreibermessstellen (für GWÜ geeignet)	78,9	Fremdlabor
05774020	Stadt Delbrück	026163251	S 2 Schledde	Betreibermessstellen (für GWÜ geeignet)	440,3	Fremdlabor
05774024	Gemeinde Hövelhof	026163093	G 12 Grossekaemp	Betreibermessstellen (für GWÜ geeignet)	71,2	Fremdlabor
05774032	Stadt Pader- born	024181377	Stute Osmose	Emittentenmessstel- len, Anlagenüberwa- chung	75,9	Fremdlabor

GEMEIN- DE_ID	GEMEINDE	Nummer der MST	NAME	MESSPROGRAMM	Nit- rat_MAX [mg/L]	Herkunft LABOR
05774040	Stadt Wünnen- berg	024170082	QU 2 Leiberg Bueren	Rohwasserüberwa- chung (für GWÜ geeignet)	52,9	Fremdlabor
05915000	Stadt Hamm	094120390	Quelle Geinegge	Grundwassergüte- messstellen des Landes	51,3	LANUV
05915000	Stadt Hamm	094120407	Quelle Südbecke	Grundwassergüte- messstellen des Landes	62,3	LANUV
05958024	Stadt Marsberg	091190605	Marsberg P1 OL732	Grundwassergüte- messstellen des Landes	57,5	LANUV
05958024	Stadt Marsberg	094190008	TB Gut Forst 2	Rohwasserüberwa- chung (für GWÜ geeignet)	51,9	Fremdlabor
05958024	Stadt Marsberg	094190094	Paulinenquelle	Rohwasserüberwa- chung (für GWÜ geeignet)	53,9	LANUV
05974016	Stadt Erwitte	091161150	Erwitte GWB 1	Grundwassergüte- messstellen des Landes	52,2	LANUV
05974016	Stadt Erwitte	091161253	Erwitte GWB 3	Grundwassergüte- messstellen des Landes	63,2	LANUV
05974016	Stadt Erwitte	094160041	Quelle Eikeloh	Rohwasserüberwa- chung (für GWÜ geeignet)	51,9	LANUV
05974016	Stadt Erwitte	094160788	TB 1 WW Eikeloh	Rohwasserüberwa- chung (für GWÜ geeignet)	59,9	Fremdlabor
05974020	Stadt Geseke	091166603	Bruecke	Grundwassergüte- messstellen des Landes	90,2	LANUV